[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Local Search Algorithm for Radius-Constrained k-Median

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14637))

Included in the following conference series:

  • 326 Accesses

Abstract

Given a set X of n points in a metric space and a radius R, we consider the combining version of k-center and k-median which is with the same objective as k-median, but with the constraint that any x in X is assigned to a center within the range R. In this paper, we propose a bicriteria approximation algorithm achieving a bicriteria approximation ratio of \((3+\varepsilon , 7)\), by incorporating local search with the technology of finding key balls with consequent center exchanges therein. Compared to the state-of-the-art approximation ratio of (8, 4) that is based on an LP formulation for k-median, we improve the ratio of the total distance from 8 to \(3+\varepsilon \) at the price of compromising the ratio of radius from 4 to 7.

Supported by the National Science Foundation of China (Nos. 12271098 and 61772005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamdari, S., Shmoys, D.: A bicriteria approximation algorithm for the k-center and k-median problems. In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787, pp. 66–75. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89441-6_6

    Chapter  Google Scholar 

  2. Aouad, A., Segev, D.: The ordered k-median problem: surrogate models and approximation algorithms. Math. Program. 177(1–2), 55–83 (2019)

    Article  MathSciNet  Google Scholar 

  3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problems. In: Proceedings of The Thirty-third Annual ACM Symposium on Theory of Computing, pp. 21–29 (2001)

    Google Scholar 

  4. Byrka, J., Pensyl, T., Rybicki, B, et al.: An improved approximation for k-median and positive correlation in budgeted optimization. ACM Transactions on Algorithms (TALG) 13(2), 1–31 (2017)

    Google Scholar 

  5. Byrka, J., Sornat, K., Spoerhase, J.: Constant-factor approximation for ordered k-median. In: Proceedings of The 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 620–631 (2018)

    Google Scholar 

  6. Chakrabarty, D., Swamy, C.: Interpolating between k-median and k-center: approximation algorithms for ordered k-median. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018) (2018)

    Google Scholar 

  7. Chan, T.-H.H., Dinitz, M., Gupta, A.: Spanners with slack. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 196–207. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_20

    Chapter  Google Scholar 

  8. Charikar, M., Makarychev, K., Makarychev, Y.: Local global tradeoffs in metric embeddings. SIAM J. Comput. 39(6), 2487–2512 (2010)

    Article  MathSciNet  Google Scholar 

  9. Cohen-Addad, V., Gupta, A., Hu, L., Oh, H., Saulpic, D.: An improved local search algorithm for k-median. In: Proceedings of The 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1556–1612 (2022)

    Google Scholar 

  10. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM (JACM) 50(6), 795–824 (2003)

    Article  MathSciNet  Google Scholar 

  11. Jung, C., Kannan, S., Lutz, N.: A center in your neighborhood: fairness in facility location. arXiv e-prints, pp. arXiv–1908 (2019)

    Google Scholar 

  12. Kamiyama, N.: The distance-constrained matroid median problem. Algorithmica 82(7), 2087–2106 (2020)

    Article  MathSciNet  Google Scholar 

  13. Khoury, B., Pardalos, P.M.: A heuristic for the Steiner problem in graphs. Comput. Optim. Appl. 6, 5–14 (1996)

    Article  MathSciNet  Google Scholar 

  14. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mahabadi, S., Vakilian, A.: Individual fairness for k-clustering. In: International Conference on Machine Learning, pp. 6586–6596 (2020)

    Google Scholar 

  16. Negahbani, M., Chakrabarty, D.: Better algorithms for individually fair \( k \)-clustering. Adv. Neural. Inf. Process. Syst. 34, 13340–13351 (2021)

    Google Scholar 

  17. Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-27640-8

    Book  Google Scholar 

  18. Swamy, C.: Improved approximation algorithms for matroid and knapsack median problems and applications. ACM Trans. Algorithms (TALG) 12(4), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  19. Vakilian, A., Yalciner, M.: Improved approximation algorithms for individually fair clustering. In: International Conference on Artificial Intelligence and Statistics, pp. 8758–8779 (2022)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Taishan Scholars Young Expert Project of Shandong Province (No. tsqn202211215) and the National Science Foundation of China (Nos. 12271098 and 61772005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longkun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, G., Guo, L. (2024). A Local Search Algorithm for Radius-Constrained k-Median. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2340-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2339-3

  • Online ISBN: 978-981-97-2340-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics