[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SFformer: Adaptive Sparse and Frequency-Guided Transformer Network for Single Image Derain

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 62 Accesses

Abstract

Recently transformer models have become prominent models for single image deraining (SID) task. However, these models often fail to utilize frequency knowledge and appropriate self-attention mechanisms effectively, leading to inadequate extraction of rain features and persistent artifacts. To alleviate this problem, we propose Adaptive Sparse and Frequency-Guided Transformer Network (SFformer) for single image derain. Specifically, we propose Adaptive Sparse Attention (ASA) module to selectively pay attention to the most useful channels for better feature aggregation. In addition, considering that rain streaks mainly correspond to the high frequency components in the image, we introduce Frequency-Guided Feedforward (FGF) module to focus on rain streaks. Integrating these proposed modules into a UNet backbone, extensive experimental results on commonly used benchmarks show that the proposed method outperforms current state-of-the-art method. The source code of our work is available at https://github.com/HuluBaba/ECEDerain.

This work was supported by the National Natural Science Foundation of China under Grants 62076182, 62376198, 62376199 and 62076184. The National Key Research and Development Program of China under Grants 2022YFB3104770.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., Li, H.: Robust representation learning with feedback for single image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7738–7747 (2021)

    Google Scholar 

  2. Chen, D.Y., Chen, C.C., Kang, L.W.: Visual depth guided color image rain streaks removal using sparse coding. IEEE Trans. Circuits Syst. Video Technol. 24(8), 1430–1455 (2014). https://doi.org/10.1109/TCSVT.2014.2308627

    Article  Google Scholar 

  3. Chen, H., et al.: Pre-trained image processing transformer. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12299–12310 (2021)

    Google Scholar 

  4. Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5896–5905 (2023)

    Google Scholar 

  5. Chen, Y., Yan, Z., Ma, L.: New insights on the generation of rain streaks: generating-removing united unpaired image deraining network. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 390–402. Springer (2023)

    Google Scholar 

  6. Cui, Y., et al.: Selective frequency network for image restoration. In: The Eleventh International Conference on Learning Representations (2023)

    Google Scholar 

  7. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017)

    Google Scholar 

  8. Fu, X., Qi, Q., Zha, Z.J., Zhu, Y., Ding, X.: Rain streak removal via dual graph convolutional network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1352–1360 (2021)

    Google Scholar 

  9. Fu, Y.H., Kang, L.W., Lin, C.W., Hsu, C.T.: Single-frame-based rain removal via image decomposition. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1453–1456 (2011). https://doi.org/10.1109/ICASSP.2011.5946766

  10. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Google Scholar 

  11. He, Y., Jiang, A., Jiang, L., Wang, Z., Wang, L.: Dual-path coupled image deraining network via spatial-frequency interaction. arXiv:2402.04855 (2024)

  12. Li, R., Cheong, L.F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019)

    Google Scholar 

  13. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 254–269 (2018)

    Google Scholar 

  14. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2736–2744 (2016)

    Google Scholar 

  15. Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3397–3405 (2015). https://doi.org/10.1109/ICCV.2015.388

  16. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  17. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Google Scholar 

  18. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3932–3941 (2019)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019)

    Google Scholar 

  22. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped transformer for image restoration. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17662–17672 (2022)

    Google Scholar 

  23. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3872–3881 (2019)

    Google Scholar 

  24. Wei, Y., et al.: DerainCycleGAN: rain attentive cycleGAN for single image deraining and rainmaking. IEEE Trans. Image Process. 30, 4788–4801 (2021)

    Google Scholar 

  25. Wei, Y., et al.: Semi-derainGAN: a new semi-supervised single image deraining. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  26. Yang, H., Yin, H., Molchanov, P., Li, H., Kautz, J.: NViT: vision transformer compression and parameter redistribution. arXiv:2110.04869 (2021)

  27. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017)

    Google Scholar 

  28. Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2Real transfer learning for image deraining using Gaussian processes. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2723–2733 (2020)

    Google Scholar 

  29. Ye, Y., Chang, Y., Zhou, H., Yan, L.: Closing the loop: joint rain generation and removal via disentangled image translation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2053–2062 (2021)

    Google Scholar 

  30. Yi, Q., Li, J., Dai, Q., Fang, F., Zhang, G., Zeng, T.: Structure-preserving deraining with residue channel prior guidance. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4238–4247 (2021)

    Google Scholar 

  31. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.: Restormer: efficient transformer for high-resolution image restoration. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5718–5729 (2022)

    Google Scholar 

  32. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14816–14826 (2021)

    Google Scholar 

  33. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)

    Google Scholar 

  34. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3943–3956 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyun Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 241 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Zhang, H., Cai, K., Miao, D., Zhang, Q., Li, M. (2025). SFformer: Adaptive Sparse and Frequency-Guided Transformer Network for Single Image Derain. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics