[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

IG-GRD: A Model Based on Disentangled Graph Representation Learning for Imaging Genetic Data Fusion

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14863))

Included in the following conference series:

  • 448 Accesses

Abstract

Integrating imaging and genetic data provides a comprehensive approach to analyze brain disorders from different perspectives, which has important implications for the early diagnosis of Alzheimer’s Disease (AD) and the exploration of its underlying mechanisms. Current fusion methods focus primarily on the correlation between modalities or rely on decision-level fusion. However, due to the heterogeneity of imaging and genetic data, as well as the necessity to simultaneously consider their correlation and independence, current methods often face challenges in adequately integrating and fully learning from multimodal information. Therefore, in this paper, we propose a novel multimodal data fusion method, named IG-GRD, based on graph representation learning for imaging and genetic data. Firstly, we construct imaging graphs and genetic graphs based on the characteristics of fMRI and SNP data, mapping the data from these two modalities into a unified representation space. Subsequently, we use a disentangled representation learning method on multimodal graphs that considers structural information and complex relationships between nodes to capture common and private graph representations. Finally, the disentangled feature graphs are fused at the graph level to synthesize the collaborative and individual effects of imaging and genetic information on the disease. Experimental results demonstrate that IG-GRD excels not only in recognizing mild cognitive impairment (MCI), but also in identifying brain regions and genes closely associated with AD and cognition. This work offers a novel methodology for the fusion of imaging and genetic data and provides new directions for the early diagnosis of AD and the investigation of its pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petersen, R.C.: Mild cognitive impairment. N. Engl. J. Med. 364(23), 2227–2234 (2011)

    Article  Google Scholar 

  2. Jia, J., Ning, Y., Chen, M., et al.: Biomarker changes during 20 years preceding alzheimer’s disease. N. Engl. J. Med. 390(8), 712–722 (2024)

    Article  Google Scholar 

  3. Iso-Markku, P., Aaltonen, S., Kujala, U.M., et al.: Physical activity and cognitive decline among older adults: a systematic review and meta-analysis. JAMA Netw. Open 7(2), e2354285 (2024)

    Article  Google Scholar 

  4. Chen, J., Li, X., Calhoun, V.D., et al.: Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum. Brain Mapp. 42(8), 2556–2568 (2021)

    Article  Google Scholar 

  5. Jin, D., Wang, P., Zalesky, A., et al.: Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer’s Disease. Hum. Brain Mapp. 41(12), 3379–3391 (2020)

    Article  Google Scholar 

  6. Gao, Y., Li, X., Shang, S., et al.: LincSNP 3.0: an updated database for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Nucleic Acids Res. 49(D1), D1244–D1250 (2021)

    Google Scholar 

  7. Lei, B., Zhao, Y., Huang, Z., et al.: Adaptive sparse learning using multi-template for neurodegenerative disease diagnosis. Med. Image Anal. 61, 101632 (2020)

    Article  Google Scholar 

  8. Ramanathan, T.T., Hossen, J., Sayeed, S.: Naïve bayes based multiple parallel fuzzy reasoning method for medical diagnosis. J. Eng. Sci. Technol. 17(1), 0472–0490 (2022)

    Google Scholar 

  9. Song, X., Zhou, F., Frangi, A.F., et al.: Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Med. Image Anal. 69, 101947 (2021)

    Article  Google Scholar 

  10. Zuo, Q., Zhu, Y., Lu, L., Yang, Z., Li, Y., Zhang, N.: Fusing structural and functional connectivities using disentangled VAE for detecting MCI. In: Feng Liu, Y., Zhang, H.K., Stephen, E.P., Wang, H. (eds.) Brain Informatics: 16th International Conference, BI 2023, Hoboken, NJ, USA, August 1–3, 2023, Proceedings, pp. 3–13. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43075-6_1

    Chapter  Google Scholar 

  11. Bi, X.A., Zhou, W., Luo, S., et al.: Feature aggregation graph convolutional network based on imaging genetic data for diagnosis and pathogeny identification of Alzheimer’s disease. Briefings Bioinform. 23(3), bbac137 (2022)

    Google Scholar 

  12. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 1377 (2010)

    Google Scholar 

  13. Purcell, S., Neale, B., Todd-Brown, K., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  Google Scholar 

  14. Logothetis, N.K.: The neural basis of the blood–oxygen–level–dependent functional magnetic resonance imaging signal. Philosoph. Trans. Royal Soc. London. Ser. B: Biol. Sci. 357(1424), 1003–1037 (2002)

    Google Scholar 

  15. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Networks 32(3), 245–251 (2010)

    Article  Google Scholar 

  16. Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., Zhu, W.: Disentangled contrastive learning on graphs. Adv. Neural. Inf. Process. Syst. 34, 21872–21884 (2021)

    Google Scholar 

  17. Du, L., Wang, H., Zhang, J., et al.: Adaptive structured sparse multiview canonical correlation analysis for multimodal brain imaging association identification. Sci. China Inf. Sci. 66(4), 142106 (2023)

    Article  MathSciNet  Google Scholar 

  18. Lee, S., Cho, Y., Ji, Y., et al. Multimodal integration of neuroimaging and genetic data for the diagnosis of mood disorders based on computer vision models. J. Psychiatric Res. (2024)

    Google Scholar 

  19. Hazarika, D., Zimmermann, R., Poria, S.: Misa: modality-invariant and-specific representations for multimodal sentiment analysis. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1122–1131 (2020)

    Google Scholar 

  20. Mo, Y., Lei, Y., Shen, J., Shi, X., Shen, H. T., Zhu, X.: Disentangled multiplex graph representation learning. In: International Conference on Machine Learning PML, pp. 24983–25005 (2023)

    Google Scholar 

  21. Gretton, Ar., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) Algorithmic learning theory, pp. 63–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11564089_7

    Chapter  Google Scholar 

  22. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10772–10781 (2019)

    Google Scholar 

  23. Jack, C.R., Jr., Dickson, D.W., Parisi, J.E., et al.: Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58(5), 750–757 (2002)

    Article  Google Scholar 

  24. Christen-Zaech, S., Kraftsik, R., Pillevuit, O., et al.: Early olfactory involvement in Alzheimer’s disease. Can. J. Neurol. Sci. 30(1), 20–25 (2003)

    Article  Google Scholar 

  25. Kim, B.H., Nho, K., Huang, Y.N., et al.: Genome-wide association meta-analysis identifies a novel LRBA locus for brain age acceleration in two independent Korean Cohorts. Alzheimers Dement. 19, e082848 (2023)

    Article  Google Scholar 

  26. Kiyota, T., Ingraham, K.L., Jacobsen, M.T., Xiong, H., Ikezu, T.: FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc. Natl. Acad. Sci. 108(49), E1339–E1348 (2011)

    Article  Google Scholar 

  27. Simon, M.J., Wang, M.X., Murchison, C.F., et al.: Transcriptional network analysis of human astrocytic endfoot genes reveals region-specific associations with dementia status and tau pathology. Sci. Rep. 8(1), 12389 (2018)

    Article  Google Scholar 

  28. Cruciani, F., Aparo, A., Brusini, L., et al.: Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer’s Disease. J. Biomed. Inform. 149, 104569 (2024)

    Article  Google Scholar 

  29. Stutzbach, L.D., Xie, S.X., Naj, A.C., et al.: The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol. Commun. 1, 1–13 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC project grants (No. 61932018, 32241027 and 62072441).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa Zhang or Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, S., Wang, L., Li, C., Wan, X., Zhang, F., Hu, B. (2024). IG-GRD: A Model Based on Disentangled Graph Representation Learning for Imaging Genetic Data Fusion. In: Huang, DS., Zhang, X., Pan, Y. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14863. Springer, Singapore. https://doi.org/10.1007/978-981-97-5581-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5581-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5580-6

  • Online ISBN: 978-981-97-5581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics