[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Novel Computational Intelligence for Optimizing Cyber Physical Pre-evaluation System

  • Chapter
  • First Online:
Computational Intelligence for Decision Support in Cyber-Physical Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 540))

Abstract

Owing to the quality heterogeneity of returned used products, firms engaged in re-manufacturing activities are obliged to employ 100 % inspection of these products to evaluate their quality and suitability for re-manufacturing. In addition to visual inspection, a recent tendency is to use data recorded in electronic devices (e.g., radio frequency identification (RFID)) implanted in the products. In this way, information is obtained quickly without the need for complete (and expensive) product disassembly. Nevertheless, making sense of RFID data in a complex cyber physical system (CPS) environment (which involves such as cloud computing for used product life cycle information retrieval and physically used products scanning) is a complex task. For instance, if an RFID readers fails, there may be missing values exist. The purpose of this chapter is to employ two computational intelligence (CI) optimization methods which can improve the reliability of such inspection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. AliIlgin, S.M. Gupta, Performance improvement potential of sensor embedded products in environmental supply chains. Resour. Conserv. Recycl. 55(6), 580–592 (2011).

    Google Scholar 

  2. T. Amezquita, R. Hammond, M. Salazar, B. Bras, Characterizing the re-manufacturability of engineering systems. Paper presented at the ASME advances in design automation conference, Boston, Massachusetts, USA, pp. 271–278, 17–20 Sept 1995

    Google Scholar 

  3. T. Apostolopoulos, A. Vlachos, Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int. J.Combinatorics, Article ID 523806, 1–23 (2011)

    Article  Google Scholar 

  4. N. Aras, T. Boyaci, V. Verter, The effect of categorizing returned products in re-manufacturing. IIE Trans. 36, 319–331 (2004)

    Article  Google Scholar 

  5. B.G. Babu, M. Kannan, Lightning bugs. Resonance 7(9), 49–55 (2002)

    Article  Google Scholar 

  6. H.-G. Beyer, H.-P. Schwefel, Evolution strategies: a comprehensive introduction. J. Nat Comput. 1(1), 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. J.D. Blackburn, V.D.R. Guide, G.C. Souza, L.N.V. Wassenhove, Reverse supply chains for commercial returns. Calif. Manag. Rev. 46(2), 6–22 (2004)

    Article  Google Scholar 

  8. B. Bras, M.W. McIntosh, Product, process, and organizational design for re-manufacture—an overview of research. Rob. Comput. Integr. Manuf. 15, 167–178 (1999)

    Article  Google Scholar 

  9. L.C. Cagnina, S.C. Esquivel, C.A. Coello, Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)

    MATH  Google Scholar 

  10. D.J. Cook, J.C. Augusto, V.R. Jakkula, Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5, 277–298 (2009)

    Article  Google Scholar 

  11. M. Črepinšek, S.-H. Liu, L. Mernik, A note on teaching–learning-based optimization algorithm. Inf. Sci. 212, 79–93 (2012)

    Article  Google Scholar 

  12. Y. Du, H. Cao, F. Liu, C. Li, X. Chen, An integrated method for evaluating the re-manufacturability of used machine tool. J. Clean. Prod. 20, 82–91 (2012)

    Article  Google Scholar 

  13. M. Fleischmann, H.R. Krikke, R. Dekker, S.D.P. Flapper, A characterisation of logistics networks for product recovery. OMEGA 28, 653–666 (2000)

    Article  Google Scholar 

  14. M. Fleischmann, JAEEv Nunen, B. Gräve, Integrating closed-loop supply chains and spare-parts management at IBM. Interfaces 33(6), 44–56 (2003)

    Article  Google Scholar 

  15. A.H. Gandomi, X.-S. Yang, A.H. Alavi, Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89, 2325–2336 (2011)

    Article  Google Scholar 

  16. V.D.R. Guide, R.H. Teunter, L.N.V. Wassenhove, Matching demand supply to maximize profits from re-manufacturing. Manuf. Serv. Oper. Manage. 5(4), 303–316 (2003)

    Google Scholar 

  17. R. Hammond, T. Amezquita, B. Bras, Issues in the automotive parts re-manufacturing industry-a discussion of results from surveys performed among re-manufacturers. Int. J. Eng. Des. Autom.—Spec Issue Environmentally Conscious Des. Manufact. 4(1), 27–46 (1998)

    Google Scholar 

  18. M.-H. Horng, Vector quantization using the firefly algorithm for image compression. Expert. Syst. Appl. 39, 1078–1091 (2012)

    Article  Google Scholar 

  19. M.-H. Horng, Y.-X. Lee, M.-C. Lee, R.-J. Liou, Firefly meta-heuristic algorithm for training the radia basis function network for data classification and disease diagnosis. in ed. by R. Parpinelli Theory and New Applications of Swarm Intelligence, Chapter 7, pp. 115–132: In-Tech (2012)

    Google Scholar 

  20. M.-H. Horng, R.-J. Liou, Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert. Syst. Appl. 38, 14805–14811 (2011)

    Article  Google Scholar 

  21. Y.-C. Hsieh, P.-S. You, An effective immune based two-phase approach for the optimal reliability. Appl. Math. Comput. 218, 1297–1307 (2011)

    Article  MathSciNet  Google Scholar 

  22. J. Jumadinova, P. Dasgupta, Firefly-inspired synchronization for improved dynamic pricing in online markets. Paper presented at the 2nd IEEE international conference on self-adaptive and self-organizing Systems, pp. 402–412, (2008)

    Google Scholar 

  23. Ö. Karaer, H.L. Lee, Managing the reverse channel with RFID-enabled negative demand information. Prod. Oper. Manage. 16(5), 625–645 (2007)

    Article  Google Scholar 

  24. M. Kärkkäinen, T. Ala-Risku, K. Främling, The product centric approach: a solution to supply network information management problems? Comput. Ind. 52(2), 147–159 (2003)

    Article  Google Scholar 

  25. M. Kärkkäinen, T. Ala-Risku, J. Holmström, Increasing customer value and decreasing distribution costs with merge-in-transit. Int. J. Phys. Distrib. Logistics. Manage. 33(2), 132–148 (2003)

    Article  Google Scholar 

  26. J. Kennedy, R. C. Eberhart, Particle swarm optimization. Paper presented at the IEEE International Joint conference on neural networks (1995)

    Google Scholar 

  27. H. Krikke, I. l. Blanc, S. v. d. Velde, Product modularity and the design of closed-loop supply chains. Calif. Manage. Rev. 46(2), 23–38 (2004)

    Google Scholar 

  28. A. Kulkarni, D. Ralph, D. McFarlane, Value of RFID in re-manufacturing. Int. J. Serv. Oper. Inf. 2(3), 225–252 (2007)

    Google Scholar 

  29. A. G. Kulkarni, A. K. N. Parlikad, D. C. McFarlane, M. Harrison, Networked RFID systems in product recovery management. Paper presented at the IEEE international symposium on electronics and the environment (ISEE 2005), pp. 66–71 (2005)

    Google Scholar 

  30. W. Kuo, V.R. Prasad, An annotated overview of system-reliability optimization. IEEE Trans. Reliab. 49, 176–187 (2000)

    Article  Google Scholar 

  31. R. Leidenfrost, W. Elmenreich, Establishing wireless time-triggered communication using firefly clock synchronization approach. Paper presented at the 2008 international workshop on intelligent solutions in embedded systems, pp. 1–8, (2008)

    Google Scholar 

  32. S. Łukasik, S. Żak, Firefly algorithm for continuous constrained optimization tasks Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, LNCS 5796. (Berlin, Spinger-Verlag, 2009), pp. 97–106

    Google Scholar 

  33. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. (Springer-Verlag, Berlin Heidelberg, 1996)

    MATH  Google Scholar 

  34. J. A. E. E. v. Nunen, R. Zuidwijk, E-enabled closed-loop supply chains. Calif. Manage. Rev. 46(2), 40–54, (2004)

    Google Scholar 

  35. R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided. Des. 43, 303–315 (2011)

    Article  Google Scholar 

  36. M.K. Sayadi, R. Ramezanian, N. Ghaffari-Nasab, A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 1, 1–10 (2010)

    Article  Google Scholar 

  37. J. Senthilnath, S.N. Omkar, V. Mani, Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1, 164–171 (2011)

    Article  Google Scholar 

  38. L. Shu, W. Flowers, A structured approach to design for re-manufacture. Intell. Concurrent Des.: Fundam. Methodol. Model. Pract. 66, 13–19 (1993)

    Google Scholar 

  39. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. E. Sundin, B. Bras, Making functional sales environmentally and economically beneficial through product re-manufacturing. J. Clean. Prod. 13, 913–925 (2005)

    Article  Google Scholar 

  41. L. Wang, L.-P. Li, A coevolutionary differential evolution with harmony search for reliability–redundancy optimization. Expert. Syst. Appl. 39, 5271–5278 (2012)

    Article  Google Scholar 

  42. X. Wu, Research on design management based on green re-manufacturing engineering. Syst. Eng. Procedia 4, 448–454 (2012)

    Article  Google Scholar 

  43. B. Xing, W.-J. Gao, Computational intelligence in re-manufacturing. 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033: IGI Global, ISBN 978-1-4666-4908-8 (2014)

    Google Scholar 

  44. B. Xing, W.-J. Gao, T. Marwala, The applications of computational intelligence in radio frequency identification research. Paper presented at the IEEE international conference on systems, man, and cybernetics (IEEE SMC), 14–17 Oct, (Seoul, Korea, 2012) pp. 2067–2072

    Google Scholar 

  45. X.-S. Yang, Nature-inspired metaheuristic algorithms 2nd edn. (UK, Luniver Press) ISBN 978-1-905986-28-6 (2008)

    Google Scholar 

  46. X.-S. Yang, Firefly algorithms for multimodal optimization, in SAGA 2009, LNCS 5792, ed. by O. Watanabe, T. Zeugmann (Springer-Verlag, Berlin Heidelberg, 2009), pp. 169–178

    Google Scholar 

  47. X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  48. X.-S. Yang, Chaos-enhanced firefly algorithm with automatic parameter tuning. Int. J. Swarm Intell. Res. 2(4), 1–11 (2011)

    Article  Google Scholar 

  49. J. Yao, S. Zhu, The research of design system for re-manufacturing. N. Technol. N. Process 5, 22–24 (2004)

    Google Scholar 

  50. W.-C. Yeh, T.-J. Hsieh, Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput. Oper. Res. 38, 1465–1473 (2011)

    Article  MathSciNet  Google Scholar 

  51. H. Yüksel, Design of automobile engines for re-manufacture with quality function deployment. Int. J. Sustain. Eng. 3(3), 170–180 (2010)

    Article  Google Scholar 

  52. Z.-N. Zhang, Z.-L. Liu, Y. Chen, Y.-B. Xie, Knowledge flow in engineering design: an ontological framework. Proc. Ins. Mech. Eng. Part C: J. Mech. Eng. Sci. 227(4), 760–770 (2013)

    Article  Google Scholar 

  53. C. Zikopoulos, G. Tagaras, On the attractiveness of sorting before disassembly in re-manufacturing. IIE Trans. 40, 313–323 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xing, B. (2014). Novel Computational Intelligence for Optimizing Cyber Physical Pre-evaluation System. In: Khan, Z., Ali, A., Riaz, Z. (eds) Computational Intelligence for Decision Support in Cyber-Physical Systems. Studies in Computational Intelligence, vol 540. Springer, Singapore. https://doi.org/10.1007/978-981-4585-36-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-36-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-35-4

  • Online ISBN: 978-981-4585-36-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics