Abstract
We show that every problem in the complexity class SZK (Statistical Zero Knowledge) is efficiently reducible to the Minimum Circuit Size Problem (MCSP). In particular Graph Isomorphism lies in RP MCSP.
This is the first theorem relating the computational power of Graph Isomorphism and MCSP, despite the long history these problems share, as candidate NP-intermediate problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM Journal on Computing 35, 1467–1493 (2006)
Arvind, V., Das, B.: SZK proofs for black-box group problems. Theory Comput. Syst. 43(2), 100–117 (2008)
Arvind, V., Torán, J.: Isomorphism testing: Perspective and open problems. Bulletin of the EATCS 86 (2005)
Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25(2), 127–132 (1987)
Ben-Or, M., Gutfreund, D.: Trading help for interaction in statistical zero-knowledge proofs. J. Cryptology 16(2), 95–116 (2003)
Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.P.: Interactive and noninteractive zero knowledge are equivalent in the help model. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 501–534. Springer, Heidelberg (2008)
Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Symposium on Theory of Computing (STOC), pp. 151–158 (1971)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 691–729 (1991)
Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 1364–1396 (1999)
Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: ACM Symposium on Theory of Computing (STOC), pp. 73–79 (2000)
Kapron, B., Malka, L., Srinivasan, V.: A characterization of non-interactive instance-dependent commitment-schemes (NIC). In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 328–339. Springer, Heidelberg (2007)
Krajíček, J.: Forcing with Random Variables and Proof Complexity. Cambridge University Press (2011)
Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhauser Verlag, Basel (1993)
Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9, 265–266 (1973)
Levin, L.: Personal communication (2003)
Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, New York (2003)
Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55, 24–35 (1997)
Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE Annals of the History of Computing 6(4), 384–400 (1984)
Variyam, V.N.: Nondeterministic circuit minimization problem and derandomizing Arthur-Merlin games. Int. J. Found. Comput. Sci. 16(6), 1297–1308 (2005)
Wikipedia (2014), http://en.wikipedia.org/wiki/NP-intermediate
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allender, E., Das, B. (2014). Zero Knowledge and Circuit Minimization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-44465-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44464-1
Online ISBN: 978-3-662-44465-8
eBook Packages: Computer ScienceComputer Science (R0)