[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Metrischer Trifokaltensor für die Auswertung von Bildfolgen

  • Conference paper
Mustererkennung 1999

Part of the book series: Informatik aktuell ((INFORMAT))

  • 246 Accesses

Zusammenfassung

Der Artikel stellt ein Verfahren zur Auswertung von Bildfolgen vor, welches Trilinearitäten für die Bestimmung der Kamerabewegung und Prädiktion von Punkten in Folgebilder einsetzt. Eine spezielle minimale Parametrisierung des Trifokaltensors in Abhängigkeit von Bewegung und Kalibrierung ermöglicht die direkte Schätzung der Bewegungsparameter. Die Schätzung erfolgt im Gauß-Helmert-Modell, das aus der Geodäsie bekannt ist. Wir zeigen Ergebnisse einer Auswertung von Bildfolgen einer Fahrspurbeobachtung aus einem Kraftfahrzeug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 36.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 46.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. W. Förstner and E. Gülch. A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features. In Inter-commission Workshop (ISPRS), pages 149–155, Jun 1987.

    Google Scholar 

  2. O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line correspondences between n images. Tech. Rep. RR-2665, INRIA, 1995.

    Google Scholar 

  3. O. Faugeras and T. Papadopoulo. A nonlinear method for estimating the projective geometry of 3 views. In International Conference on Computer Visions (ICCV), pages 477–484, 1998.

    Google Scholar 

  4. M. Hahn. Bildsequenzanalyse für die passive Navigation. Dissertation, Reihe C, Nr. 433, Universität Stuttgart, 1995.

    Google Scholar 

  5. R. Hartley. Lines and points in three views - a unified approach. In Image Understanding Workshop, Monterey, California, pages 1009–1016. ARPA, 1994.

    Google Scholar 

  6. R. I. Hartley. Minimizing algebraic error. In International Conference on Computer Vision (ICCV), 1998.

    Google Scholar 

  7. R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison Wesley Publishing Company, 1993.

    Google Scholar 

  8. P. J. Huber. Robust Statistics. John Wiley & Sons, 1981.

    Book  MATH  Google Scholar 

  9. K. R. Koch. Parameterschätzung und HypothesentestsDümmler Verlag Bonn, 1987.

    MATH  Google Scholar 

  10. Q. T. Luong and O. D. Faugeras. The fundamental matrix: Theory, algorithms and stability analysis. International Journal of Computer Vision (IJCV), 17: 43–75, 1996.

    Article  Google Scholar 

  11. A. Shashua. Trilinearity in visual recognition by alignment. In European Conference on Computer Vision (ECCV), pp. 479–484. Springer Verlag, 1994.

    Google Scholar 

  12. P. H. S. Torr and A. Zisserman. Robust parametrization and computation of the trifocal tensor. Image Vision and Computing, 15: 591–605, 1997.

    Article  Google Scholar 

  13. ZM93] A. Zisserman and S. J. Maybank. A case against epipolar geometry. In Applications of Invariance in Computer Vision, pp. 69–88. Springer Verlag,1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steines, B., Abraham, S. (1999). Metrischer Trifokaltensor für die Auswertung von Bildfolgen. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds) Mustererkennung 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60243-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60243-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66381-2

  • Online ISBN: 978-3-642-60243-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics