Abstract
Content-Based Image Retrieval (CBIR) aims at retrieving the most similar images in a collection by taking into account image visual properties. In this scenario, accurately ranking collection images is of great relevance. Aiming at improving the effectiveness of CBIR systems, re-ranking and rank aggregation algorithms have been proposed. However, different re-ranking and rank aggregation approaches produce different image rankings. These rankings are complementary and, therefore, can be further combined aiming at obtaining more effective results. This paper presents novel approaches for combining re-ranking and rank aggregation methods aiming at improving the effectiveness of CBIR systems. Several experiments were conducted involving shape, color, and texture descriptors. Experimental results demonstrate that our approaches can improve the effectiveness of CBIR systems.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Arica, N., Vural, F.T.Y.: Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters 24(9-10), 1627–1639 (2003)
Bai, X., Wang, B., Wang, X., Liu, W., Tu, Z.: Co-transduction for shape retrieval. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 328–341. Springer, Heidelberg (2010)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover (1966)
Cormack, G.V., Clarke, C.L.A., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: SIGIR 2009, pp. 758–759 (2009)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA 2003, pp. 28–36 (2003)
Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planar shapes - supplementary material. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 286–299. Springer, Heidelberg (2010)
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: CVPR 1997, p. 762 (1997)
Kontschieder, P., Donoser, M., Bischof, H.: Beyond Pairwise Shape Similarity Analysis. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 655–666. Springer, Heidelberg (2010)
Kovalev, V., Volmer, S.: Color co-occurence descriptors for querying-by-example. In: MMM 1998, p. 32 (1998)
Latecki, L.J., Lakmper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, pp. 424–429 (2000)
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. PAMI 29(2), 286–299 (2007)
Ling, H., Yang, X., Latecki, L.J.: Balancing Deformability and Discriminability for Shape Matching. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 411–424. Springer, Heidelberg (2010)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)
Pedronette, D.C.G., da S. Torres, R.: Exploiting Contextual Information for Image Re-ranking. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 541–548. Springer, Heidelberg (2010)
Pedronette, D.C.G., da, S., Torres, R.: Shape retrieval using contour features and distance optmization. In: VISAPP, vol. 1, pp. 197–202 (2010)
Pedronette, D.C.G., da, S., Torres, R.: Exploiting contextual information for rank aggregation. In: ICIP, pp. 97–100 (2011)
Guimarães Pedronette, D.C., da S. Torres, R.: Image Re-ranking and Rank Aggregation Based on Similarity of Ranked Lists. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 369–376. Springer, Heidelberg (2011)
da, S., Torres, R., Falcão, A.X.: Contour Salience Descriptors for Effective Image Retrieval and Analysis. Image and Vision Computing 25(1), 3–13 (2007)
Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: CIKM 2002, pp. 102–109 (2002)
Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)
Tao, B., Dickinson, B.W.: Texture recognition and image retrieval using gradient indexing. JVCIR 11(3), 327–342 (2000)
Tu, Z., Yuille, A.L.: Shape Matching and Recognition – Using Generative Models and Informative Features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part III. LNCS, vol. 3023, pp. 195–209. Springer, Heidelberg (2004)
van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)
Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR, pp. 357–364 (2009)
Yang, X., Latecki, L.J.: Affinity learning on a tensor product graph with applications to shape and image retrieval. In: CVPR, pp. 2369–2376 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pedronette, D.C.G., da S. Torres, R. (2012). Combining Re-Ranking and Rank Aggregation Methods. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012. Lecture Notes in Computer Science, vol 7441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33275-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-33275-3_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33274-6
Online ISBN: 978-3-642-33275-3
eBook Packages: Computer ScienceComputer Science (R0)