[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Avoidability of Cubes under Permutations

  • Conference paper
Developments in Language Theory (DLT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7410))

Included in the following conference series:

Abstract

In this paper we consider the avoidance of patterns in infinite words. Generalising the traditional problem setting, functional dependencies between pattern variables are allowed here, in particular, patterns involving permutations. One of the remarkable facts is that in this setting the notion of avoidability index (the smallest alphabet size for which a pattern is avoidable) is meaningless since a pattern with permutations that is avoidable in one alphabet can be unavoidable in a larger alphabet. We characterise the (un-)avoidability of all patterns of the form π i(x) π j(x) π k(x), called cubes under permutations here, for all alphabet sizes in both the morphic and antimorphic case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bischoff, B., Nowotka, D.: Pattern avoidability with involution. In: Words 2011, Prague. Electron. Proc. in Theoret. Comput. Sci, vol. 63, pp. 65–70 (2011)

    Google Scholar 

  2. Cassaigne, J.: Unavoidable Patterns. In: Algebraic Combinatorics on Words, pp. 111–134. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fundamenta Informaticae 114, 1–18 (2012)

    Google Scholar 

  4. Currie, J.: Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339(1), 7–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Currie, J.: Pattern avoidance with involution. CoRR abs/1105.2849 (2011)

    Google Scholar 

  6. Hall, M.: Generators and relations in groups – The Burnside problem. In: Lectures on Modern Mathematics, vol. 2, pp. 42–92. Wiley, New York (1964)

    Google Scholar 

  7. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)

    Google Scholar 

  8. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I.,Mat.-Nat.,Kl., Christiania 7, 1–22 (1906)

    Google Scholar 

  9. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I.,Mat.-Nat.,Kl., Christiania 1, 1–67 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manea, F., Müller, M., Nowotka, D. (2012). The Avoidability of Cubes under Permutations. In: Yen, HC., Ibarra, O.H. (eds) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol 7410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31653-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31653-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31652-4

  • Online ISBN: 978-3-642-31653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics