[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visibly Pushdown Automata with Multiplicities: Finiteness and K-Boundedness

  • Conference paper
Developments in Language Theory (DLT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7410))

Included in the following conference series:

Abstract

We propose an extension of visibly pushdown automata by means of weights (represented as positive integers) associated with transitions, called visibly pushdown automata with multiplicities. The multiplicity of a computation is the product of the multiplicities of the transitions used along this computation. The multiplicity of an input is the sum of the ones of all its successful computations. Finally, the multiplicity of such an automaton is the supremum of multiplicities over all possible inputs.

We prove the problem of deciding whether the multiplicity of an automaton is finite to be in PTime. We also consider the K-boundedness problem, i.e. deciding whether the multiplicity is bounded by K: we prove this problem to be ExpTime-complete when K is part of the input and in PTime when K is fixed.

As visibly pushdown automata are closely related to tree automata, we discuss deeply the relationship of our extension with weighted tree automata.

Partially supported by the ANR Project ECSPER (ANR-09-JCJC-0069).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. STOC 2004, pp. 202–211 (2004)

    Google Scholar 

  2. Borchardt, B., Fülöp, Z., Gazdag, Z., Maletti, A.: Bounds for tree automata with polynomial costs. Journal of Automata, Languages and Combinatorics 10(2/3), 107–157 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Caralp, M.: Automates à pile visible: ambiguité et valuation. Master’s thesis, Aix-Marseille Université (2011)

    Google Scholar 

  4. Caralp, M., Reynier, P.-A., Talbot, J.-M.: A polynomial procedure for trimming visibly pushdown automata. Technical Report hal-00606778, HAL, CNRS, France (2011)

    Google Scholar 

  5. Caralp, M., Reynier, P.-A., Talbot, J.-M.: VPA with Multiplicities: Finiteness and K-Boundedness. Technical Report hal-00697091, HAL, CNRS, France (2012)

    Google Scholar 

  6. Chan, T.-H., Ibarra, O.H.: On the finite-valuedness problem for sequential machines. Theoretical Computer Science 23, 95–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2008)

    Google Scholar 

  8. De Souza, R.: Étude structurelle des transducteurs de norme bornée. PhD thesis, ENST, France (2008)

    Google Scholar 

  9. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of Visibly Pushdown Transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 355–367. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Fülöp, Z., Vogler, H.: Weighted Tree Automata and Tree Transducers. In: Handbook of Weighted Automata. Springer (2009)

    Google Scholar 

  11. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

    Google Scholar 

  12. Sakarovitch, J., de Souza, R.: On the Decidability of Bounded Valuedness for Transducers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 588–600. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inf. 26(6), 527–542 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3), 424–437 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1), 113–142 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–349 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caralp, M., Reynier, PA., Talbot, JM. (2012). Visibly Pushdown Automata with Multiplicities: Finiteness and K-Boundedness. In: Yen, HC., Ibarra, O.H. (eds) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol 7410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31653-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31653-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31652-4

  • Online ISBN: 978-3-642-31653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics