[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

Abstract

Average path length is recognised as one of the vital characteristics of random graphs and complex networks. Despite a rather sparse structure, some cases were reported to have a relatively short lengths between every pair of nodes, making the whole network available in just several hops. This small-worldliness was reported in metabolic, social or linguistic networks and recently in the Internet. In this paper we present results concerning path length distribution and the diameter of the spike-flow graph obtained from dynamics of geometrically embedded neural networks. Numerical results confirm both short diameter and average path length of resulting activity graph. In addition to numerical results, we also discuss means of running simulations in a concurrent environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the World-Wide Web. Nature 401 (September 9, 1999)

    Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (January 2002)

    Google Scholar 

  3. Bassett, D.S., Bullmore, E.: Small-World Brain Networks. The Neuroscientist 12(6) (2006)

    Google Scholar 

  4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews, Neuroscience 10 (March 2009)

    Google Scholar 

  5. Chung, F., Lu, L.: Complex graphs and networks. In: Conference Board of the Mathematical Sciences. American Mathematical Society (2006)

    Google Scholar 

  6. Csermely, P.: Weak links: the universal key to the stability of networks and complex systems. Springer, Heidelberg (2009)

    Google Scholar 

  7. Eguiluz, V., Chialvo, D., Cecchi, G., Baliki, M., Apkarian, V.: Scale-free brain functional networks. Physical Review Letters, PRL 94, 018102 (2005)

    Article  Google Scholar 

  8. Piekniewski, F.: Spontaneous scale-free structures in spike flow graphs for recurrent neural networks. Ph.D. dissertation, Warsaw University, Warsaw, Poland (2008)

    Google Scholar 

  9. Piekniewski, F., Schreiber, T.: Spontaneous scale-free structure of spike flow graphs in recurrent neural networks. Neural Networks 21(10), 1530–1536 (2008)

    Article  Google Scholar 

  10. Piekniewski, F.: Spectra of the Spike Flow Graphs of Recurrent Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 603–612. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Piersa, J., Piekniewski, F., Schreiber, T.: Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks. IEEE Transactions on Neural Networks 21(11) (November 2010)

    Google Scholar 

  12. Piersa, J., Schreiber, T.: Scale-free degree distribution in information-flow graphs of geometrical neural networks. Simulations in concurren environment (in Polish). Accepted for Mathematical Methods in Modeling and Analysis of Concurrent Systems — Postproceedings, Poland (July 2010)

    Google Scholar 

  13. Schreiber, T.: Spectra of winner-take-all stochastic neural networks, arXiv 3193(0810), pp. 1–21 (October 2008), http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf

  14. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piersa, J. (2012). Diameter of the Spike-Flow Graphs of Geometrical Neural Networks. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics