Abstract
A hybrid approach combining the unique exploration strategy of Discreet Self Organising Migration Algorithm and the robust and effective memory adaptive programming paradigm of Scatter Search is presented. The new hybrid approach is developed to solve permutative combinatorial optimization problems and it applied to the flow-shop with no-wait scheduling optimization problem. Experimentation is done with the benchmark Taillard sets and the obtained results are favorably compared with results in current literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Campos, V., Glover, F., Laguna, M., Marti, R.: An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem. Journal of Global Optimization 21, 397–414 (2001)
Davendra, D., Zelinka, I.: Optimization of quadratic assignment problem using self-organinsing migrating algorithm. Computing and Informatics 28, 169–180 (2009)
Davendra, D., Zelinka, I., Onwubolu, G.: Hybrid Differential Evolution - Scatter Search Algorithm for Permutative Optimization. In: Pinheiro dos Santos, W. (ed.) Evolutionary Computation. InTech (2009) ISBN: 978-953-307-008-7
Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., Jasek, R.: Discrete Self-Organising Migrating Algorithm for flow-shop scheduling with no-wait makespan. Mathematical and Computer Modelling (2011), doi:10.1016/j.mcm.2011.05.029
Fink, A., Vo§, S.: Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 151(2), 400–414 (2003)
Glover, F.: Heuristics for Integer Programming Using Surrogate Constraints. Decision Sciences 8(1), 156–166 (1977)
Jun-Lin, C., Dun-Wei, G., Xiao-Ping, M.: A heuristic genetic algorithm for no-wait flowshop scheduling problem. Journal of China University of Mining and Technology 17(4), 582–586 (2007)
Laguna, M., Marti, R.: Scatter Search, Methodology and Implementation in C. Springer, Berlin (2003)
Marti, R., Laguna, M., Glover, F.: Principles of Scatter Search. European Journal of Operations Research 169(2), 359–372 (2008)
Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advances in Engineering Software 36, 645–653 (2005)
Pan, Q., Fatih Tasgetiren, M., Liang, Y.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 35(9), 2807–2839 (2008)
Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Utilization of SOMA and Differential Evolution for robust stabilization of chaotic logistic equation. Computers & Mathematics with Applications 60(4), 1026–1037 (2010)
Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operations Research 64, 278–285 (1993)
Zelinka, I.: Soma - self organizing migrating algorithm. In: Onwubolu, G., Babu, B. (eds.) New Optimization Techniques in Engineering. Springer, Germany (2004)
Zelinka, I.: Soma webpage (2010), http://www.fai.utb.cz/people/zelinka/soma/
Zelinka, I., Lampinen, J.: Soma - self-organizing migrating algorithm. In: Mendel, 6th International Conference on Soft Computing, Brno, Czech Republic (2000)
Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals 40(1), 111–129 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Davendra, D.D., Zelinka, I., Onwubolu, G. (2013). Hybrid Self Organising Migrating – Scatter Search Algorithm. In: Zelinka, I., Snášel, V., Abraham, A. (eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-30504-7_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30503-0
Online ISBN: 978-3-642-30504-7
eBook Packages: EngineeringEngineering (R0)