[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Compositional Semantics of Reaction Systems with Restriction

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

  • 1854 Accesses

Abstract

Reaction systems are an abstract model of interactions among biochemical reactions, developed around two opposite mechanisms: facilitation and inhibition. The evolution of a Reaction System is driven by the external objects which are sent into the system by the environment at each step. In this paper, we propose the Reaction Algebra, a calculus resembling reaction systems extended with a restriction operator. Restriction increases the expressiveness of the calculus by allowing the modeling of hidden entities, such as those contained in membranes.

We define a compositional semantics and a behavioral equivalence for the Reaction Algebra, in order to enable the modular description of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundam. Inform. 75(1-4), 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A Tour of reaction Systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Păun, G.: Membrane Computing: An Introduction. Natural Computing Series. Springer, GmbH (2002)

    Book  MATH  Google Scholar 

  4. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theor. Comput. Sci. 410(4-5), 310–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In: Kelemen, J., Kelemenová, A. (eds.) Pǎun Festschrift. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor. Comput. Sci. 376(1-2), 3–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions Defined by Reaction Systems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Representing reaction systems by trees. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 330–342. Springer, Heidelberg (2012)

    Google Scholar 

  9. Ehrenfeucht, A., Main, M.G., Rozenberg, G., Brown, A.T.: Stability and Chaos in reaction Systems. Int. J. Found. Comput. Sci. 23(5), 1173–1184 (2012)

    Article  MATH  Google Scholar 

  10. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics and behavioral equivalences for P Systems. Theor. Comput. Sci. 395(1), 77–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics of spiking neural P systems. J. Log. Algebr. Program. 79(6), 304–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An Overview on Operational Semantics in Membrane Computing. Int. J. Found. Comput. Sci. 22(1), 119–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form Preserving Step-by-step Behaviour. Fundam. Inform. 87(1), 1–34 (2008)

    MathSciNet  MATH  Google Scholar 

  14. van Glabbeek, R.: The Linear Time–Branching Time Spectrum I; The Semantics of Concrete, Sequential Processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

    Google Scholar 

  15. Pǎun, G., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P systems and R systems. Theor. Comput. Sci. 429(0), 258–264 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pardini, G., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S. (2013). A Compositional Semantics of Reaction Systems with Restriction. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics