[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust Regional Modeling for Nonlinear System Identification Using Self-Organizing Maps

  • Conference paper
Advances in Self-Organizing Maps

Abstract

Global modeling is a common approach to the problem of learning dynamical input-output mappings. It consists in fitting a single regression model, starting from the whole set of input and output measurements. On the other side of the spectrum, the local modeling approach segments the input space into several localized partitions (usually, Voronoi cells) and a number of specialized regression models are fit over each partition. Regional modeling stands in between the global and local approach. Firstly, the input space is indeed divided into partitions (as in local modeling), then partitions are merged into larger regions over which the regression models are built. In this paper, we extend the regional modeling approach through the use of robust regression, a statistical framework that better handles outliers and deviation of residuals from gaussianity. The approach is validated using two benchmark problems in system identification and its performance compared to those achieved by standard global and local models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, D.F.: A robust method for multiple linear regression. Technometrics 16(4), 523–531 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azman, K., Kocijan, J.: Dynamical systems identification using gaussian process models with incorporated local models. Engineering Applications of Artificial Intelligence 24(1), 398–408 (2011)

    Article  Google Scholar 

  3. Barreto, G.A., Araújo, A.F.R.: Identification and control of dynamical systems using the self-organizing map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)

    Article  Google Scholar 

  4. Barreto, G.A., Souza, L.G.M.: Adaptive filtering with the self-organizing maps: A performance comparison. Neural Networks 19(6), 785–798 (2006)

    Article  MATH  Google Scholar 

  5. Chen, J.-Q., Xi, Y.-G.: Nonlinear system modeling by competitive learning and adaptive fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics-Part C 28(2), 231–238 (1998)

    Article  Google Scholar 

  6. Cho, J., Principe, J., Erdogmus, D., Motter, M.: Quasi-sliding mode control strategy based on multiple linear models. Neurocomputing 70(4-6), 962–974 (2007)

    Google Scholar 

  7. Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage Publications (1997)

    Google Scholar 

  8. Huang, G.B., Zhu, Q.Y., Ziew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1-3), 489–501 (2006)

    Article  Google Scholar 

  9. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical Statistics 35(1), 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, A.K., Dubes, R.C., Chen, C.: Bootstrap techniques for error estimation. IEEE Transactions on Pattern Analysis and Machine Ingelligence 9(5), 628–633 (1987)

    Article  MATH  Google Scholar 

  11. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks 1(1), 4–27 (1990)

    Article  Google Scholar 

  12. Norgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic. Springer (2000)

    Google Scholar 

  13. Peng, H., Nakano, K., Shioya, H.: A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Control Systems Technology 15(1), 130–143 (2007)

    Article  Google Scholar 

  14. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proceedings of the IEEE 86(11), 2240–2258 (1998)

    Article  Google Scholar 

  15. de Souza Junior, A.H., Barreto, G.A.: Regional Models for Nonlinear System Identification Using the Self-Organizing Map. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 717–724. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  17. Walter, J., Ritter, H., Schulten, K.: Non-linear prediction with self-organizing map. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 1990), vol. 1, pp. 587–592 (1990)

    Google Scholar 

  18. Wang, X., Syrmos, V.L.: Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models. In: 15th Mediterranean Conference on Control and Automation (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Souza Junior, A.H., Corona, F., Barreto, G.A. (2013). Robust Regional Modeling for Nonlinear System Identification Using Self-Organizing Maps. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics