Abstract
Collective classification algorithms have been used to improve classification performance when network training data with content, link and label information and test data with content and link information are available. Collective classification algorithms use a base classifier which is trained on training content and link data. The base classifier inputs usually consist of the content vector concatenated with an aggregation vector of neighborhood class information. In this paper, instead of using a single base classifier, we propose using different types of base classifiers for content and link. We then combine the content and link classifier outputs using different classifier combination methods. Our experiments show that using heterogeneous classifiers for link and content classification and combining their outputs gives accuracies as good as collective classification. Our method can also be extended to collective classification scenarios with multiple types of content and link.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernstein, A.A., Clearwater, S., Hill, S., Perlich, C., Provost, F.: Discovering knowledge from relational data extracted from business news. In: Proceedings of the Workshop on Multi-Relational Data Mining at KDD 2002, pp. 7–22 (2002)
Angin, P., Neville, J.: A shrinkage approach for modeling non-stationary relational autocorrelation. In: SNA/KDD (2008)
Awan, A., Bari, H., Yan, F., Moksong, S., Yang, S., Chowdhury, S., Cui, Q., Yu, Z., Purisima, E., Wang, E.: Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst. Biol. 1(5), 292–297 (2007)
Balcan, D., Erzan, A.: Random model for rna interference yields scale free network. Eur. Phys. J. B (38), 253–260 (2004)
Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Graph-based model-selection framework for large ensembles. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 557–564. Springer, Heidelberg (2010)
Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD (1998)
Chapelle, O., Zien, A., Scholkopf, B.: Semi-supervised learning. MIT Press, Cambridge (2006)
Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: EDBT 2008 (2008)
Fast, A., Jensen, D.: Why stacked models perform effective collective classification. In: Eighth IEEE International Conference on Data Mining, pp. 785–790 (2008)
Goodman, L.: Snowball sampling. Annals of Mathematical Statistics 32, 148–170 (1961)
Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: University of Massachusetts, Technical Report 04-27 (2004)
Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of ECML (1998)
Kou, Z., Cohen, W.W.: Notes on stacked graphical learning for efficient inference in markov random fields. In: CMU Technical Report, CMU-ML-07-101 (2007)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)
Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study (May 2007)
Maeno, Y., Ohsawa, Y.: Node discovery problem for a social network (2007)
McDowell, L., Gupta, K., Aha, D.: Cautious collective classification. Journal of Machine Learning Research 10, 2777–2836 (2009)
McDowell, L., Gupta, K., Aha, D.: Meta-Prediction for Collective Classification (2010)
McDowell, L., Gupta, K.M., Aha, D.W.: Cautious inference in collective classification. In: AAAI, pp. 596–601. AAAI Press, Menlo Park (2007)
Neville, J., Gallagher, B., Eliassi-Rad, T.: Evaluating statistical tests for within-network classifiers of relational data. In: ICDM (2009)
Neville, J., Jensen, D.: Iterative classification in relational data. In: Workshop on Statistical Relational Learning. AAAI, Menlo Park (2000)
Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)
Preisach, C., Schmidt-Thieme, L.: Ensembles of relational classifiers. Knowl. Inf. Syst 14(3), 249–272 (2008)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77(2), 275–286 (1989)
Sen, P., Getoor, L.: Empirical comparison of approximate inference algorithms for networked data. In: ICML Workshop on Open Problems in Statistical Relational Learning, (SRL 2006) (2006)
Sen, P., Getoor, L.: Link-based classification. In: UM Computer Science Department, Technical Report, CS-TR-4858. University of Maryland (2007)
Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3) (2008)
Senliol, B., Aral, A., Cataltepe, Z.: Feature selection for collective classification. In: International Symposium on Computer and Information Sciences (ISCIS 2009). IEEE, Los Alamitos (2009)
Senliol, B., Cataltepe, Z., Sonmez, A.: Feature and node selection for collective classification. In: International Symposium on Computer and Information Sciences, (ISCIS 2010) (2010)
U. o. M. Statistical relational learning group
Tresp, V., Bundschus, M., Rettinger, A., Huang, Y.: Towards machine learning on the semantic web. In: Uncertainty Reasoning for the Semantic Web I. Lecture Notes in AI. Springer, Heidelberg (2008)
Vapnik, V.N.: Estimation of dependences based on empirical data. Birkhuser, Basel (2006)
Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM, New York (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cataltepe, Z., Sonmez, A., Baglioglu, K., Erzan, A. (2011). Collective Classification Using Heterogeneous Classifiers. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-23199-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23198-8
Online ISBN: 978-3-642-23199-5
eBook Packages: Computer ScienceComputer Science (R0)