[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PG-Join: Proximity Graph Based String Similarity Joins

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6809))

  • 1545 Accesses

Abstract

In many applications, for example, in data integration scenarios, strings must be matched if they are similar. String similarity joins, which match all pairs of similar strings from two datasets, are of particular interest and have recently received much attention in the database research community. Most approaches, however, assume a global similarity threshold; all string pairs that exceed the threshold form a match in the join result. The global threshold approach has two major problems: (a) the threshold depends on the (mostly unknown) data distribution, (b) often there is no single threshold that is good for all string pairs.

In this paper we propose the PG-Join algorithm, a novel string similarity join that requires no configuration and uses an adaptive threshold. PG-Join computes a so-called proximity graph to derive an individual threshold for each string. Computing the proximity graph efficiently is essential for the scalability of PG-Join. To this end we develop a new and fast algorithm, PG-I, that computes the proximity graph in two steps: First an efficient approximation is computed, then the approximation error is fixed incrementally until the adaptive threshold is stable. Our extensive experiments on real-world and synthetic data show that PG-I is up to five times faster than the state-of-the-art algorithm and suggest that PG-Join is a useful and effective join paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate string joins in a database (almost) for free. In: Proceedings of the 27th Int. Conf. on Very Large Data Bases, VLDB 2001, pp. 491–500. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  2. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins with edit distance constraints. In: Proc. VLDB Endow., vol. 1, pp. 933–944 (2008)

    Google Scholar 

  3. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in data cleaning. In: Proceedings of the 22nd Int. Conf. on Data Engineering, ICDE 2006, p. 5. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  4. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins. In: Proceedings of the 2010 Int. Conf. on Management of Data, SIGMOD 2010, pp. 327–338. ACM, New York (2010)

    Google Scholar 

  5. Augsten, N., Böhlen, M., Gamper, J.: The pq-gram distance between ordered labeled trees. ACM Trans. Database Syst. 35, 4:1–4:36 (2008)

    Article  Google Scholar 

  6. Mazeika, A., Böhlen, M.H.: Cleansing databases of misspelled proper nouns. In: CleanDB (2006)

    Google Scholar 

  7. Kazimianec, M., Augsten, N.: Exact and efficient proximity graph computation. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 289–304. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Kazimianec, M., Augsten, N.: PG-skip: Proximity graph based clustering of long strings. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 31–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intelligent Systems 18, 16–23 (2003)

    Article  Google Scholar 

  10. Jin, L., Li, C., Mehrotra, S.: Efficient record linkage in large data sets. In: Proceedings of the 8th Int. Conf. on Database Systems for Advanced Applications, DASFAA 2003, p. 137. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  11. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In: Proceedings of the 1998 Int. Conf. on Management of Data, SIGMOD 1998, pp. 237–248. ACM, New York (1998)

    Google Scholar 

  12. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Trans. on Knowl. and Data Eng. 19, 1–16 (2007)

    Article  Google Scholar 

  13. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms. In: Proceedings of the 29th Int. Conf. on Research and Development in Information Retrieval, SIGIR 2006, pp. 284–291. ACM, New York (2006)

    Google Scholar 

  14. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theoretical Computer Science 92, 191–211 (1992)

    Article  MATH  Google Scholar 

  15. Li, C., Wang, B., Yang, X.: Vgram: improving performance of approximate queries on string collections using variable-length grams. In: Proc. of the 33rd Int. Conf. on Very Large Data Bases, VLDB 2007, pp. 303–314. VLDB Endow. (2007)

    Google Scholar 

  16. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33, 31–88 (2001)

    Article  Google Scholar 

  17. Ribeiro, L.A., Härder, T.: Generalizing prefix filtering to improve set similarity joins. Information Systems 36(1), 62–78 (2011)

    Article  Google Scholar 

  18. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string searches. In: Proceedings of the 24th Int. Conf. on Data Engineering, ICDE 2008, pp. 257–266. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  19. Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Butterworths (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kazimianec, M., Augsten, N. (2011). PG-Join: Proximity Graph Based String Similarity Joins. In: Bayard Cushing, J., French, J., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science, vol 6809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22351-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22351-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22350-1

  • Online ISBN: 978-3-642-22351-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics