Abstract
Interpretation of brain states from EEG single trials, multiple electrodes and time points, is addressed. A computationally efficient and robust framework for spatio-temporal feature selection is introduced. The framework is generic and can be applied to different classification tasks. Here, it is applied to a visual task of distinguishing between faces and houses. The framework includes training of regularized logistic regression classifier with cross-validation and the usage of a wrapper approach to find the optimal model. It was compared with two other methods for selection of time points. The spatial-temporal information of brain activity obtained using this framework, can give an indication to correlated activity of regions in the brain (spatial) as well as temporal activity correlations between and within EEG electrodes. This spatial-temporal analysis can render a far more holistic interpretability for visual perception mechanism without any a priori bias on certain time periods or scalp locations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-Computer Interfaces for Communication and Control. Clin. Neurophy. 113, 767–791 (2002)
Allison, B., Wolpaw, E., Wolpaw, J.: Brain Computer Interface Systems: Progress and Prospects. Expert Review of Medical Devices 4, 463–474 (2007)
Dornhege, G., del R. Millan, J., Hinterberger, T., McFarland, D., Muller, K.R.: Towards Brain-Computer Interfacing. MIT Press (2007)
Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.R., Curio, G.: The noninvasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37, 539–550 (2007)
Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for Eeg-Based Brain-Computer Interfaces. J. Neural Eng. 4, R1–R13 (2007)
Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)
Muller, T., Ball, T., Kristeva-Feige, R., Mergner, T., Timmer, J.: Selecting Relevant Electrode Positions for Classification Tasks Based on the Electro-Encephalogram. Med. Biol. Eng. Comput. 38, 62–67 (2000)
Palaniappan, R., Raveendran, P., Omatu, S.: VEP Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Netw. 13, 486–491 (2002)
Schroder, M., Bogdan, M., Rosenstiel, W., Hinterberger, T., Birbaumer, N.: Automated EEG Feature Selection for Brain Computer Interfaces. In: Proc. 1st Intern. IEEE-EMBS Conf. on Neural Eng., Capri Island, Italy (2003)
Lal, T., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Scholkopf, B.: Support Vector Channel Selection in BCI. IEEE Trans. Biomed. Eng. 51, 1003–1010 (2004)
Tomioka, R., Muller, K.R.: A regularized discriminative framework for EEG analysis with application to brain-computer interface. Neuroimage 49, 415–432 (2010)
Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Recognition, 2nd edn. Wiley-Interscience, New York (2001)
Christoforou, C., Sajda, P., Parra, L.C.: Second order bilinear discriminant analysis for single trial EEG analysis. Advances in Neural Info. Proc. Sys. 20, 313–320 (2008)
Tomioka, R., Aihara, K., Muller, K.R.: Logistic regression for single trial eeg classification. In: Scholkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 1377–1384 (2007)
Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N.: Inferring Functional Brain States Using Temporal Evolution of Regularized Classifiers. Comput. Intell. Neurosci., Article ID. 52609 (2007)
Murray, M., Brunet, M., Brunet, D., Michel, C.: Topographic ERP analyses: step-by-step tutorial review. Brain Topography 20, 249–269 (2008)
Lehmann, D., Skrandies, W.: Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. Clin. Neurophysiol. 48, 609–621 (1980)
Lehmann, D., Ozaki, H., Pal, I.: EEG alpha map series: brain microstates by space-oriented adaptive segmentation. Electroenceph. Clin. Neurophysiol. 67, 271–288 (1987)
Hasson-Meir, Y., Zhdanov, A., Hendler, T., Intrator, N.: Inference of Brain Mental States from Spatio-Temporal Analysis of EEG Single Trials. In: Proc. of Biosignals (2011)
Ekman, P., Friesen, W.: Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto (1976)
Lundqvist, D., Flykt, A., Ohman, A.: The Karolinska Directed Emotional Faces (KDEF). Dept. of Neurosci., Karolinska Hospital, Stockholm, UK (1998)
Sadeh, B., Zhdanov, A., Podlipsky, I., Hendler, T., Yovel, G.: The Validity of the Face-Selective ERP N170 Component During Simultaneous Recording with Functional MRI. Neuroimage 42, 778–786 (2008)
Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., Hendler, T.: Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans. PloS ONE 3, e3984 (2008)
Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A.: Electroencephalographic signatures of attentional and cogntive default modes in spontaneous brain activity fluctuations at rest. Proc. of the National Academy of Sciences, U.S.A. 100, 11053–11058 (2003)
Delorme, A., Makeig, S., Sejnowski, T.: Automatic Artifact Rejection for EEG Data Using High-Order Statistics and Independent Component Analysis. In: Proc. of the 3th Intern. ICA Conf. (2001)
Geman, S., Bienenstock, E.: Neural Networks and The Bias / Variance Dilemma. Neural Computation 4, 1–58 (1992)
Hosmer, D., Lemeshow, S.: Applied Logistic Regression, pp. 118–124. John Wiley, New York (1989)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics (2001)
Detre, G., Polyn, S., Moore, C., Natu, V., Singer, B., Cohen, J., Haxby, J., Norman, K.: The Multi-Voxel Pattern Analysis (MVPA) Toolbox. In: The Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy (2006), http://www.csbmb.princeton.edu/mvpa
Minka, T.: A Comparison of Numerical Optimizers for Logistic Regression. technical report, Dept. of Statistics, Carnegie Mellon Univ. (2003)
Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence 97, 273–324 (1997)
Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.: Electrophysiological Studies of Faces Perception in Humans. J. Cognitive Neurosci. 8, 551–565 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meir-Hasson, Y., Zhdanov, A., Hendler, T., Intrator, N. (2013). A Robust and Efficient Spatio-Temporal Feature Selection for Interpretation of EEG Single Trials. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29752-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29751-9
Online ISBN: 978-3-642-29752-6
eBook Packages: Computer ScienceComputer Science (R0)