[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Robust and Efficient Spatio-Temporal Feature Selection for Interpretation of EEG Single Trials

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

  • 1632 Accesses

Abstract

Interpretation of brain states from EEG single trials, multiple electrodes and time points, is addressed. A computationally efficient and robust framework for spatio-temporal feature selection is introduced. The framework is generic and can be applied to different classification tasks. Here, it is applied to a visual task of distinguishing between faces and houses. The framework includes training of regularized logistic regression classifier with cross-validation and the usage of a wrapper approach to find the optimal model. It was compared with two other methods for selection of time points. The spatial-temporal information of brain activity obtained using this framework, can give an indication to correlated activity of regions in the brain (spatial) as well as temporal activity correlations between and within EEG electrodes. This spatial-temporal analysis can render a far more holistic interpretability for visual perception mechanism without any a priori bias on certain time periods or scalp locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-Computer Interfaces for Communication and Control. Clin. Neurophy. 113, 767–791 (2002)

    Article  Google Scholar 

  2. Allison, B., Wolpaw, E., Wolpaw, J.: Brain Computer Interface Systems: Progress and Prospects. Expert Review of Medical Devices 4, 463–474 (2007)

    Article  Google Scholar 

  3. Dornhege, G., del R. Millan, J., Hinterberger, T., McFarland, D., Muller, K.R.: Towards Brain-Computer Interfacing. MIT Press (2007)

    Google Scholar 

  4. Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.R., Curio, G.: The noninvasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37, 539–550 (2007)

    Article  Google Scholar 

  5. Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for Eeg-Based Brain-Computer Interfaces. J. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  6. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  7. Muller, T., Ball, T., Kristeva-Feige, R., Mergner, T., Timmer, J.: Selecting Relevant Electrode Positions for Classification Tasks Based on the Electro-Encephalogram. Med. Biol. Eng. Comput. 38, 62–67 (2000)

    Article  Google Scholar 

  8. Palaniappan, R., Raveendran, P., Omatu, S.: VEP Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Netw. 13, 486–491 (2002)

    Article  Google Scholar 

  9. Schroder, M., Bogdan, M., Rosenstiel, W., Hinterberger, T., Birbaumer, N.: Automated EEG Feature Selection for Brain Computer Interfaces. In: Proc. 1st Intern. IEEE-EMBS Conf. on Neural Eng., Capri Island, Italy (2003)

    Google Scholar 

  10. Lal, T., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Scholkopf, B.: Support Vector Channel Selection in BCI. IEEE Trans. Biomed. Eng. 51, 1003–1010 (2004)

    Article  Google Scholar 

  11. Tomioka, R., Muller, K.R.: A regularized discriminative framework for EEG analysis with application to brain-computer interface. Neuroimage 49, 415–432 (2010)

    Article  Google Scholar 

  12. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)

    Article  Google Scholar 

  13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Recognition, 2nd edn. Wiley-Interscience, New York (2001)

    Google Scholar 

  14. Christoforou, C., Sajda, P., Parra, L.C.: Second order bilinear discriminant analysis for single trial EEG analysis. Advances in Neural Info. Proc. Sys. 20, 313–320 (2008)

    Google Scholar 

  15. Tomioka, R., Aihara, K., Muller, K.R.: Logistic regression for single trial eeg classification. In: Scholkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 1377–1384 (2007)

    Google Scholar 

  16. Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N.: Inferring Functional Brain States Using Temporal Evolution of Regularized Classifiers. Comput. Intell. Neurosci., Article ID. 52609 (2007)

    Google Scholar 

  17. Murray, M., Brunet, M., Brunet, D., Michel, C.: Topographic ERP analyses: step-by-step tutorial review. Brain Topography 20, 249–269 (2008)

    Article  Google Scholar 

  18. Lehmann, D., Skrandies, W.: Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. Clin. Neurophysiol. 48, 609–621 (1980)

    Article  Google Scholar 

  19. Lehmann, D., Ozaki, H., Pal, I.: EEG alpha map series: brain microstates by space-oriented adaptive segmentation. Electroenceph. Clin. Neurophysiol. 67, 271–288 (1987)

    Article  Google Scholar 

  20. Hasson-Meir, Y., Zhdanov, A., Hendler, T., Intrator, N.: Inference of Brain Mental States from Spatio-Temporal Analysis of EEG Single Trials. In: Proc. of Biosignals (2011)

    Google Scholar 

  21. Ekman, P., Friesen, W.: Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto (1976)

    Google Scholar 

  22. Lundqvist, D., Flykt, A., Ohman, A.: The Karolinska Directed Emotional Faces (KDEF). Dept. of Neurosci., Karolinska Hospital, Stockholm, UK (1998)

    Google Scholar 

  23. Sadeh, B., Zhdanov, A., Podlipsky, I., Hendler, T., Yovel, G.: The Validity of the Face-Selective ERP N170 Component During Simultaneous Recording with Functional MRI. Neuroimage 42, 778–786 (2008)

    Article  Google Scholar 

  24. Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., Hendler, T.: Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans. PloS ONE 3, e3984 (2008)

    Article  Google Scholar 

  25. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A.: Electroencephalographic signatures of attentional and cogntive default modes in spontaneous brain activity fluctuations at rest. Proc. of the National Academy of Sciences, U.S.A. 100, 11053–11058 (2003)

    Article  Google Scholar 

  26. Delorme, A., Makeig, S., Sejnowski, T.: Automatic Artifact Rejection for EEG Data Using High-Order Statistics and Independent Component Analysis. In: Proc. of the 3th Intern. ICA Conf. (2001)

    Google Scholar 

  27. Geman, S., Bienenstock, E.: Neural Networks and The Bias / Variance Dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  28. Hosmer, D., Lemeshow, S.: Applied Logistic Regression, pp. 118–124. John Wiley, New York (1989)

    Google Scholar 

  29. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics (2001)

    Google Scholar 

  30. Detre, G., Polyn, S., Moore, C., Natu, V., Singer, B., Cohen, J., Haxby, J., Norman, K.: The Multi-Voxel Pattern Analysis (MVPA) Toolbox. In: The Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy (2006), http://www.csbmb.princeton.edu/mvpa

  31. Minka, T.: A Comparison of Numerical Optimizers for Logistic Regression. technical report, Dept. of Statistics, Carnegie Mellon Univ. (2003)

    Google Scholar 

  32. http://www.cs.wisc.edu/condor/manual/v7.0.1

  33. Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  34. Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.: Electrophysiological Studies of Faces Perception in Humans. J. Cognitive Neurosci. 8, 551–565 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meir-Hasson, Y., Zhdanov, A., Hendler, T., Intrator, N. (2013). A Robust and Efficient Spatio-Temporal Feature Selection for Interpretation of EEG Single Trials. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics