[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scale-Invariant Vote-Based 3D Recognition and Registration from Point Clouds

  • Chapter
Machine Learning for Computer Vision

Abstract

This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this space—the SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Toshiba CAD model point clouds dataset

    Google Scholar 

  2. Agrawal, M.: A Lie algebraic approach for consistent pose registration for general euclidean motion. In: Proc. Int. Conf. on Intelligent Robot and Systems, pp. 1891–1897 (2006)

    Google Scholar 

  3. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 120–127. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  5. Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2) (1992)

    Google Scholar 

  6. Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81, 166–210 (2001)

    Article  MATH  Google Scholar 

  7. Cetingul, H.E., Vidal, R.: Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1896–1902 (2009)

    Google Scholar 

  8. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. J. Pattern Recognition Letters 28, 1252–1262 (2007)

    Article  Google Scholar 

  9. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 790–799 (1995)

    Article  Google Scholar 

  10. Davies, P.I., Higham, N.J.: A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25, 464–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient and robust 3D object recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 998–1005 (2010)

    Google Scholar 

  12. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision Application 9, 272–290 (1997)

    Article  Google Scholar 

  13. Ashbrook, A.P., Fisher, R.B., Robertson, C., Werghi, N.: Finding Surface Correspondence for Object Recognition and Registration Using Pairwise Geometric Histograms. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 674. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 215–310 (1948)

    Google Scholar 

  15. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1022–1029 (June 2009)

    Google Scholar 

  17. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)

    Article  Google Scholar 

  18. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, pp. 156–164 (2003)

    Google Scholar 

  19. Khoshelham, K.: Extending generalized Hough transform to detect 3D objects in laser range data. In: Workshop on Laser Scanning, vol. XXXVI, pp. 206–210 (2007)

    Google Scholar 

  20. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough Transform and 3D SURF for Robust Three Dimensional Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Computer Vision 77(1-3), 259–289 (2008)

    Article  Google Scholar 

  22. Mamic, G., Bennamoun, M.: Representation and recognition of 3d free-form objects. Digital Signal Processing 12(1), 47–76 (2002)

    Article  Google Scholar 

  23. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Modeling 11(2), 253–291 (2005)

    Article  MATH  Google Scholar 

  24. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(10), 1584–1601 (2006)

    Article  Google Scholar 

  25. Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24, 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mundy, J.L.: Object Recognition in the Geometric Era: A Retrospective. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 3–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Okada, R.: Discriminative generalized hough transform for object dectection. In: Proc. Int. Conf. on Computer Vision, pp. 2000–2005 (October 2009)

    Google Scholar 

  28. Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. Int. J. Computer Vision 80(1) (2008)

    Google Scholar 

  29. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21, 807–832 (2002)

    Article  Google Scholar 

  30. Pelletier, B.: Kernel density estimation on Riemannian manifolds. Statistics Probability Letters 73(3), 297–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. JMIV 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  32. Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems for geometric features processing. J. Math. Imaging Vis. 9, 49–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petrelli, A., Di Stefano, L.: On the repreatability of the local reference frame for partial shape matching. In: Proc. Int. Conf. on Computer Vision (2011)

    Google Scholar 

  34. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: Proc. Int. Conf. Robotics and Automation, pp. 3212–3217 (2009)

    Google Scholar 

  35. Saupe, D., Vranic, D.V.: 3D Model Retrieval with Spherical Harmonics and Moments. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, p. 392. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  36. Schramm, É., Schreck, P.: Solving geometric constraints invariant modulo the similarity group. In: Int. Conf. on Computational Science and Applications, pp. 356–365 (2003)

    Google Scholar 

  37. Shotton, J.D.J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(7), 1270–1281 (2008)

    Article  Google Scholar 

  38. Srivastava, A., Klassen, E.: Monte Carlo extrinsic estimators of manifold-valued parameters. IEEE Trans. on Signal Processing 50(2), 299–308 (2002)

    Article  Google Scholar 

  39. Subbarao, R., Meer, P.: Nonlinear mean shift for clustering over analytic manifolds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. I, pp. 1168–1175 (2006)

    Google Scholar 

  40. Subbarao, R., Meer, P.: Nonlinear mean shift over Riemannian manifolds. Int. J. Computer Vision 84(1) (2009)

    Google Scholar 

  41. Tombari, F., Di Stefano, L.: Object recognition in 3D scenes with occlusions and clutter by Hough voting. In: Proc. Pacifc-Rim Symp. on Image and Video Technology, pp. 349–355 (2010)

    Google Scholar 

  42. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Proc. European Conf. on Computer Vision (2010)

    Google Scholar 

  43. Vogiatzis, G., Hernández, C.: Video-based, real-time multi view stereo. Image and Vision Computing 29(7), 434–441 (2011)

    Article  Google Scholar 

  44. Woodford, O.J., Pham, M.-T., Maki, A., Perbet, F., Stenger, B.: Demisting the Hough transform for 3D shape recognition and registration. In: British Machine Vision Conference (2011)

    Google Scholar 

  45. Roger, P.: Woods. Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage, 18(3):769–788 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Tri Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Pham, MT. et al. (2013). Scale-Invariant Vote-Based 3D Recognition and Registration from Point Clouds. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28661-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28660-5

  • Online ISBN: 978-3-642-28661-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics