Abstract
This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this space—the SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Toshiba CAD model point clouds dataset
Agrawal, M.: A Lie algebraic approach for consistent pose registration for general euclidean motion. In: Proc. Int. Conf. on Intelligent Robot and Systems, pp. 1891–1897 (2006)
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 120–127. Springer, Heidelberg (2006)
Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)
Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2) (1992)
Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81, 166–210 (2001)
Cetingul, H.E., Vidal, R.: Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1896–1902 (2009)
Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. J. Pattern Recognition Letters 28, 1252–1262 (2007)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 790–799 (1995)
Davies, P.I., Higham, N.J.: A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25, 464–485 (2003)
Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient and robust 3D object recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 998–1005 (2010)
Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision Application 9, 272–290 (1997)
Ashbrook, A.P., Fisher, R.B., Robertson, C., Werghi, N.: Finding Surface Correspondence for Object Recognition and Registration Using Pairwise Geometric Histograms. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 674. Springer, Heidelberg (1998)
Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 215–310 (1948)
Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)
Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1022–1029 (June 2009)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, pp. 156–164 (2003)
Khoshelham, K.: Extending generalized Hough transform to detect 3D objects in laser range data. In: Workshop on Laser Scanning, vol. XXXVI, pp. 206–210 (2007)
Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough Transform and 3D SURF for Robust Three Dimensional Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)
Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Computer Vision 77(1-3), 259–289 (2008)
Mamic, G., Bennamoun, M.: Representation and recognition of 3d free-form objects. Digital Signal Processing 12(1), 47–76 (2002)
Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Modeling 11(2), 253–291 (2005)
Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(10), 1584–1601 (2006)
Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24, 1–16 (2002)
Mundy, J.L.: Object Recognition in the Geometric Era: A Retrospective. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 3–28. Springer, Heidelberg (2006)
Okada, R.: Discriminative generalized hough transform for object dectection. In: Proc. Int. Conf. on Computer Vision, pp. 2000–2005 (October 2009)
Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. Int. J. Computer Vision 80(1) (2008)
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21, 807–832 (2002)
Pelletier, B.: Kernel density estimation on Riemannian manifolds. Statistics Probability Letters 73(3), 297–304 (2005)
Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. JMIV 25(1), 127–154 (2006)
Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems for geometric features processing. J. Math. Imaging Vis. 9, 49–67 (1998)
Petrelli, A., Di Stefano, L.: On the repreatability of the local reference frame for partial shape matching. In: Proc. Int. Conf. on Computer Vision (2011)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: Proc. Int. Conf. Robotics and Automation, pp. 3212–3217 (2009)
Saupe, D., Vranic, D.V.: 3D Model Retrieval with Spherical Harmonics and Moments. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, p. 392. Springer, Heidelberg (2001)
Schramm, É., Schreck, P.: Solving geometric constraints invariant modulo the similarity group. In: Int. Conf. on Computational Science and Applications, pp. 356–365 (2003)
Shotton, J.D.J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(7), 1270–1281 (2008)
Srivastava, A., Klassen, E.: Monte Carlo extrinsic estimators of manifold-valued parameters. IEEE Trans. on Signal Processing 50(2), 299–308 (2002)
Subbarao, R., Meer, P.: Nonlinear mean shift for clustering over analytic manifolds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. I, pp. 1168–1175 (2006)
Subbarao, R., Meer, P.: Nonlinear mean shift over Riemannian manifolds. Int. J. Computer Vision 84(1) (2009)
Tombari, F., Di Stefano, L.: Object recognition in 3D scenes with occlusions and clutter by Hough voting. In: Proc. Pacifc-Rim Symp. on Image and Video Technology, pp. 349–355 (2010)
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Proc. European Conf. on Computer Vision (2010)
Vogiatzis, G., Hernández, C.: Video-based, real-time multi view stereo. Image and Vision Computing 29(7), 434–441 (2011)
Woodford, O.J., Pham, M.-T., Maki, A., Perbet, F., Stenger, B.: Demisting the Hough transform for 3D shape recognition and registration. In: British Machine Vision Conference (2011)
Roger, P.: Woods. Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage, 18(3):769–788 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Pham, MT. et al. (2013). Scale-Invariant Vote-Based 3D Recognition and Registration from Point Clouds. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-28661-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28660-5
Online ISBN: 978-3-642-28661-2
eBook Packages: EngineeringEngineering (R0)