Abstract
In this paper MPI is used on PC Cluster to compute all the eigenvalues of Hermitian Toeplitz Matrices. The parallel algorithms presented were implemented in C++ with MPI functions inserted and run on a cluster of Lenovo ThinkCentre machines running RedHat Linux. The two methods, MAHT-P one embarrassingly parallel and the other MPEAHT using master/ slave scheme are compared for performance and results presented. It is seen that computation time is reduced and speedup factor increases with the number of computers used for the two parallel schemes presented. Load balancing becomes an issue as number of computers in a cluster are increased. A solution is provided to overcome such a case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Trench, W.F.: Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz Matrices. SIAM J. Matrix Anal. Appl. 10(2), 135–146 (1989)
Hu, Y.H., Kung, S.Y.: Toeplitz Eigensystem Solver. IEEE Trans. Acoust. Speech, Signal Processing ASSP-33, 1264–1271 (1985)
Noor, F., Morgera, S.D.: Recursive and Iterative Algorithms for Computing Eigenvalues of Hermitian Teoplitz Matrices. IEEE Transcations on Signal Processing 41(3), 1272–1279 (1993)
Noor, F., Morgera, S.D.: Construction of a Hermitian Toeplitz Matrix from an Arbitrary Set of Eigenvalues. IEEE Trans. Siganl Processing 40(8), 2093–2094 (1992)
Hu, Y.H.: Parallel Eigenvalue Eecomposition for Toeplitz and related Matrices. In: Proc. ICASSP 1989, Glasgow, Scotland, pp. 1107–1110 (1989)
Cybenko, G., Van Loan, C.: Computing the Minimum Eigenvalue of a Symmetric Positive Definite Teoplitz Matrix. SIAM J. Sci. Stat. Comput. 7, 123–131 (1986)
Beex, A.A., Fargues, M.P.: Highly Parallel Recursive Iterative Toeplitz Eigenspace Decomposition. IEEE Trans. Acoust. Speech, Signal Processing 37(11), 1765–1768 (1989)
Badia, J.M., Vidal, A.M.: Parallel Algorithms to Compute the Eigenvalues and Eigenvectors of Symmetric Toeplitz Matrices. Parallel Algorithms and Applications 13, 75–93 (2000)
Golub, E.H., Van Loan, C.: Matrix Computations, pp. 305–312. John Hopkins University Press, Baltimore (1983)
Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers, 2nd edn. Pearson Education Inc., London (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noor, F., Misbahuddin, S. (2010). Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices. In: Hsu, CH., Yang, L.T., Park, J.H., Yeo, SS. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2010. Lecture Notes in Computer Science, vol 6081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13119-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-13119-6_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13118-9
Online ISBN: 978-3-642-13119-6
eBook Packages: Computer ScienceComputer Science (R0)