[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Isometric Deformation Modelling for Object Recognition

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

We present two methods for isometrically deformable object recognition. The methods are built upon the use of geodesic distance matrices (GDM) as an object representation. The first method compares these matrices by using histogram comparisons. The second method is a modal approach. The largest singular values or eigenvalues appear to be an excellent shape descriptor, based on the comparison with other methods also using the isometric deformation model and a general baseline algorithm. The methods are validated using the TOSCA database of non-rigid objects and a rank 1 recognition rate of 100% is reported for the modal representation method using the 50 largest eigenvalues. This is clearly higher than other methods using an isometric deformation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. AIM@SHAPE: SHREC - 3D shape retrieval contest, http://www.aimatshape.net/event/SHREC

  2. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  3. Hamza, A.B., Krim, H.: Geodesic object representation and recognition. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 378–387. Springer, Heidelberg (2003)

    Google Scholar 

  4. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Computer-Aided Design 39(5), 398–407 (2007)

    Article  Google Scholar 

  5. Peyré, G., Cohen, L.D.: Heuristically driven front propagation for fast geodesic extraction. Intl. Journal for Computational Vision and Biomechanics 1(1), 55–67

    Google Scholar 

  6. Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognition 36, 193–204 (2003)

    Article  MATH  Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant 3D face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 62–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory 37(1), 145–151 (1991)

    Article  MATH  Google Scholar 

  9. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  10. Besl, P.J., Mckay, H.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  11. Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vision Comput. 10(5), 283–288 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P. (2009). Isometric Deformation Modelling for Object Recognition. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics