Abstract
We present two methods for isometrically deformable object recognition. The methods are built upon the use of geodesic distance matrices (GDM) as an object representation. The first method compares these matrices by using histogram comparisons. The second method is a modal approach. The largest singular values or eigenvalues appear to be an excellent shape descriptor, based on the comparison with other methods also using the isometric deformation model and a general baseline algorithm. The methods are validated using the TOSCA database of non-rigid objects and a rank 1 recognition rate of 100% is reported for the modal representation method using the 50 largest eigenvalues. This is clearly higher than other methods using an isometric deformation model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AIM@SHAPE: SHREC - 3D shape retrieval contest, http://www.aimatshape.net/event/SHREC
Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1285–1295 (2003)
Hamza, A.B., Krim, H.: Geodesic object representation and recognition. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 378–387. Springer, Heidelberg (2003)
Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Computer-Aided Design 39(5), 398–407 (2007)
Peyré, G., Cohen, L.D.: Heuristically driven front propagation for fast geodesic extraction. Intl. Journal for Computational Vision and Biomechanics 1(1), 55–67
Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognition 36, 193–204 (2003)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant 3D face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 62–69. Springer, Heidelberg (2003)
Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory 37(1), 145–151 (1991)
Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Heidelberg (2008)
Besl, P.J., Mckay, H.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vision Comput. 10(5), 283–288 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P. (2009). Isometric Deformation Modelling for Object Recognition. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_92
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)