Abstract
We developed a data-mining and visualization approach to analyze the mode-of-action (MOA) of a set of drugs. Starting from wide-genome expression data following perturbations with different compounds in a reference data-set, our method realizes an euclidean embedding providing a map of MOAs in which drugs sharing the therapeutic application or a subset of molecular targets lies in close positions. First we build a low-dimensional, visualizable space combining a rank-aggregation method and a recent tool for the analysis of the enrichment of a set of genes in ranked lists (based on the Kolmogorov-Smirnov statistic). This space is obtained using prior knowledge about the data-set composition but with no assumptions about the similarities between different drugs. Then we assess that, despite the complexity and the variety of the experimental conditions, our aim is reached with good performance without across-condition normalization procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
di Bernardo, D., Thompson, M.J., Gardner, T.S., Chobot, S.E., Eastwood, E.L., Wojtovich, A.P., Elliott, S.J., Schaus, S.E., Collins, J.J.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23(3), 377–383 (2005)
Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R.: The Connectivity Map dataset: Using gene-expression signatures to connect small molecules, genes and diseases. Science 313, 1929–1935 (2006)
Subramaniana, A., Tamayoa, P., Moothaa, V.K., Mukherjeed, S., Eberta, B.L., Gillettea, M.A., Paulovichg, A., Pomeroyh, S.L., Golub, T.R., Landera, E.S., Mesirova, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpretating genome-wide expression profiles. P. Natl. Aacad. Sci. USA 102(43), 15545–15550 (2005)
Ciaramella, A.: Interactive data analysis and clustering of genomic data. Neural Networks 21(2-3), 368–378 (2008)
Parker, J.R.: Voting methods for multiple autonomous agents. In: Proceedings of the Third Conference on Intelligent Information Systems, ANZIIS 1995, Australian, New Zealand, 27 November 1995, pp. 128–133 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iorio, F., Tagliaferri, R., di Bernardo, D. (2009). Building Maps of Drugs Mode-of-Action from Gene Expression Data. In: Masulli, F., Tagliaferri, R., Verkhivker, G.M. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2008. Lecture Notes in Computer Science(), vol 5488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02504-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-02504-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02503-7
Online ISBN: 978-3-642-02504-4
eBook Packages: Computer ScienceComputer Science (R0)