Abstract
In this paper a strategy based on differential neural networks (DNN) for the identification of the parameters in a mathematical model described by partial differential equations is proposed. The identification problem is reduced to finding an exact expression for the weights dynamics using the DNNs properties. The adaptive laws for weights ensure the convergence of the DNN trajectories to the PDE states. To investigate the qualitative behavior of the suggested methodology, here the non parametric modeling problem for a distributed parameter plant is analyzed: the anaerobic digestion system
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smith, G.D.: Numerical solution of partial differential equations: finite difference methods. Clarendon Press, Oxford (1978)
Hughes, T.J.R.: The finite element method. Prentice Hall, New Jersey (1987)
Haykin, S.: Neural Networks. A comprehensive Foundation. IEEE Press, New York (1994)
Cybenko, G.: Approximation by superposition of a sigmoidal function. Mathematical Control Signals Systems 2, 303–314 (1989)
Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks 9, 987–1000 (1998)
Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering 10, 195–201 (2000)
Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations unsing multiquadric radial basis function networks. Neural Networks 14, 185–199 (2001)
He, S., Reif, K., Unbehauen, R.: Multilayer neural networks for solving a class of partial differential equations. Neural Networks 13, 385–396 (2000)
Jaime, E.: Approximation Analytique de la solution dequations differentielles partielles par reseau de neurons artificiels: Application a la Simulation Thermique dans les Micro-Systemes. PhD thesis, Institut National des Scienes Appliquees de Toulouse (2004)
Poznyak, A., Sanchez, E., Yu, W.: Differential Neural Networks for Robust Nonlinear Control (Identification, state Estimation an trajectory Tracking). World Scientific, Singapore (2001)
Lewis, F.L., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7, 1–11 (1996)
Khalil, H.K.: Nonlinear systems. Prentice-Hall, Upper Saddle River (2002)
Adams, R., Fournier, J.: Sobolev spaces., 2nd edn. Academic Press, New York (2003)
Delyon, B., Juditsky, A., Benveniste, A.: Accuracy analysis for wavelet approximations. IEEE Trans. Neural Network 6, 332–348 (1995)
Cotter, N.E.: The stone-weierstrass theorem and its application to neural networks. IEEE Transactions on Neural Networks 1, 290–295 (1990)
Daubechies, I.: Ten lectures on Wavelets. SIAM, Philadelphia (1992)
Poznyak, A.: Deterministic Output Noise Effects in Sliding Mode Observation. In: Sliding Modes: From Principles to Implementation, ch. 3, pp. 123–146. IEEE Press, Los Alamitos (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fuentes, R., Poznyak, A., Chairez, I., Poznyak, T. (2009). Partial Differential Equations Numerical Modeling Using Dynamic Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-04277-5_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04276-8
Online ISBN: 978-3-642-04277-5
eBook Packages: Computer ScienceComputer Science (R0)