[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Partial Differential Equations Numerical Modeling Using Dynamic Neural Networks

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

  • 3870 Accesses

Abstract

In this paper a strategy based on differential neural networks (DNN) for the identification of the parameters in a mathematical model described by partial differential equations is proposed. The identification problem is reduced to finding an exact expression for the weights dynamics using the DNNs properties. The adaptive laws for weights ensure the convergence of the DNN trajectories to the PDE states. To investigate the qualitative behavior of the suggested methodology, here the non parametric modeling problem for a distributed parameter plant is analyzed: the anaerobic digestion system

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, G.D.: Numerical solution of partial differential equations: finite difference methods. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  2. Hughes, T.J.R.: The finite element method. Prentice Hall, New Jersey (1987)

    MATH  Google Scholar 

  3. Haykin, S.: Neural Networks. A comprehensive Foundation. IEEE Press, New York (1994)

    MATH  Google Scholar 

  4. Cybenko, G.: Approximation by superposition of a sigmoidal function. Mathematical Control Signals Systems 2, 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks 9, 987–1000 (1998)

    Article  Google Scholar 

  6. Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering 10, 195–201 (2000)

    Article  MATH  Google Scholar 

  7. Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations unsing multiquadric radial basis function networks. Neural Networks 14, 185–199 (2001)

    Article  MATH  Google Scholar 

  8. He, S., Reif, K., Unbehauen, R.: Multilayer neural networks for solving a class of partial differential equations. Neural Networks 13, 385–396 (2000)

    Article  Google Scholar 

  9. Jaime, E.: Approximation Analytique de la solution dequations differentielles partielles par reseau de neurons artificiels: Application a la Simulation Thermique dans les Micro-Systemes. PhD thesis, Institut National des Scienes Appliquees de Toulouse (2004)

    Google Scholar 

  10. Poznyak, A., Sanchez, E., Yu, W.: Differential Neural Networks for Robust Nonlinear Control (Identification, state Estimation an trajectory Tracking). World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  11. Lewis, F.L., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7, 1–11 (1996)

    Article  Google Scholar 

  12. Khalil, H.K.: Nonlinear systems. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  13. Adams, R., Fournier, J.: Sobolev spaces., 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  14. Delyon, B., Juditsky, A., Benveniste, A.: Accuracy analysis for wavelet approximations. IEEE Trans. Neural Network 6, 332–348 (1995)

    Article  Google Scholar 

  15. Cotter, N.E.: The stone-weierstrass theorem and its application to neural networks. IEEE Transactions on Neural Networks 1, 290–295 (1990)

    Article  MathSciNet  Google Scholar 

  16. Daubechies, I.: Ten lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  17. Poznyak, A.: Deterministic Output Noise Effects in Sliding Mode Observation. In: Sliding Modes: From Principles to Implementation, ch. 3, pp. 123–146. IEEE Press, Los Alamitos (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuentes, R., Poznyak, A., Chairez, I., Poznyak, T. (2009). Partial Differential Equations Numerical Modeling Using Dynamic Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics