Abstract
Last century saw a number of landmark scientific contributions, solving long-standing problems and opening the path to entirely new subjects. We are interested in three (here listed in chronological order) of these:
-
1.
Claude Shannon’s (Bell System Tech. J. 27:379–423, 623–656, 1948),
-
2.
Claude Shannon’s (Bell System Tech. J. 28:656–715, 1949),
-
3.
Bruno Buchberger’s (Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Armknecht and G. Ars, Algebraic attacks on stream ciphers with Gröbner bases, this volume, 2009, pp. 329–348.
D. Augot and M. Stepanov, A note on the generalisation of the Guruswami–Sudan list decoding algorithm to Reed–Muller codes, this volume, 2009, pp. 395–398.
D. Augot, E. Betti and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68.
P. Beelen and K. Brander, Decoding folded Reed–Solomon codes using Hensel lifting, this volume, 2009, pp. 389–394.
O. Billet and J. Ding, Overview of cryptanalysis techniques in multivariate public key cryptography, this volume, 2009, pp. 263–283.
M. Borges-Quintana, M. A. Borges-Trenard and E. Martinez-Moro, An application of Möller’s algorithm to coding theory, this volume, 2009, pp. 379–384.
B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.
B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475–511.
S. Bulygin and R. Pellikaan, Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases, this volume, 2009, pp. 361–365.
E. Byrne and T. Mora, Gröbner bases over commutative rings and applications to coding theory, this volume, 2009, pp. 239–261.
C. Cid and R. P. Weinmann, Block ciphers: algebraic cryptanalysis and Gröbner bases, this volume, 2009, pp. 307–327.
W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Trans. on Inf. Th. 22 (1976), no. 6, 644–654.
O. Geil, Algebraic geometry codes from order domains, this volume, 2009, pp. 121–141.
M. Giorgetti, About the nth-root codes: a Gröbner basis approach to the weight computation, this volume, 2009, pp. 357–360.
D. Gligoroski, V. Dimitrova and S. Markovski, Quasigroups as Boolean functions, their equation systems and Gröbner bases, this volume, 2009a, pp. 415–420.
D. Gligoroski, S. Markovski and S. J. Knapskog, A new measure to estimate pseudo-randomness of Boolean functions and relations with Gröbner bases, this volume, 2009b, pp. 421–425.
H. Gluesing-Luerssen, B. Langfeld and W. Schmale, A short introduction to cyclic convolutional codes, this volume, 2009, pp. 403–408.
V. D. Goppa, Codes on algebraic curves, Soviet Math. Dokl. 24 (1981), no. 1, 170–172.
M. Greferath, An introduction to ring-linear coding theory, this volume, 2009, pp. 219–238.
E. Guerrini and A. Rimoldi, FGLM-like decoding: from Fitzpatrick’s approach to recent developments, this volume, 2009, pp. 197–218.
E. Guerrini, E. Orsini and I. Simonetti, Gröbner bases for the distance distribution of systematic codes, this volume, 2009, pp. 367–372.
R. W. Hamming, Error detecting and error correcting codes, Bell Systems Technical Journal 29 (1950), 147–160.
J. L. Kim, A prize problem in coding theory, this volume, 2009, pp. 373–377.
K. Lally, Canonical representation of quasicyclic codes using Gröbner basis theory, this volume, 2009, pp. 351–355.
D. A. Leonard, A tutorial on AG code construction from a Gröbner basis perspective, this volume, 2009a, pp. 93–106.
D. A. Leonard, A tutorial on AG code decoding from a Gröbner basis perspective, this volume, 2009b, pp. 187–196.
F. Levy-dit-Vehel, M. G. Marinari, L. Perret and C. Traverso, A survey on Polly Cracker systems, this volume, 2009, pp. 285–305.
J. B. Little, Automorphisms and encoding of AG and order domain codes, this volume, 2009, pp. 107–120.
E. Martinez-Moro and D. Ruano, Mattson Solomon transform and algebra codes, this volume, 2009, pp. 385–388.
R. Matsumoto, Radical computation for small characteristics, this volume, 2009, pp. 427–430.
G. L. Matthews, Viewing multipoint codes as subcodes of one-point codes, this volume, 2009, pp. 399–402.
R. J. McEliece, A public key cryptosystem based on algebraic coding theory, JPL DSN 42–44 (1978), 114–116.
T. Mora, The FGLM problem and Moeller’s algorithm on zero-dimensional ideals, this volume, 2009a, pp. 27–45.
T. Mora, Gröbner technology, this volume, 2009b, pp. 11–25.
T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy, this volume, 2009, pp. 69–91.
P. S. Novikov, Ob algoritmičeskoĭ nerazrešimosti problemy toždestva slov v teorii grupp, Trudy Mat. Inst. im. Steklov. no. 44, Izdat. Akad. Nauk SSSR, 1955.
P. S. Novikov, On the algorithmic insolvability of the word problem in group theory, AMS Translations, Ser. 2, Vol. 9, AMS, Providence, 1958, pp. 1–122.
R. L. Rivest, A. Shamir and L. M. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21 (1978), no. 2, 120–126.
S. Sakata, The BMS algorithm, this volume, 2009a, pp. 143–163.
S. Sakata, The BMS algorithm and decoding of AG codes, this volume, 2009b, pp. 165–185.
C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656.
C. E. Shannon, Communication theory of secrecy systems, Bell System Tech. J. 28 (1949), 656–715.
C. E. Shannon and W. Weaver, The mathematical theory of communication, University of Illinois Press, Urbana, 1949.
I. Simonetti, On the non-linearity of Boolean functions, this volume, 2009, pp. 409–413.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sala, M. (2009). Gröbner Bases, Coding, and Cryptography: a Guide to the State-of-Art. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds) Gröbner Bases, Coding, and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93806-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-93806-4_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-93805-7
Online ISBN: 978-3-540-93806-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)