Abstract
To provide better insight in bone modeling and remodeling around implants, information is extracted using different imaging techniques. Two types of data used in this project are 2D histological images and 3D SRμCT (synchrotron radiation-based computed microtomography) volumes. To enable a direct comparison between the two modalities and to bypass the time consuming and difficult task of manual annotation of the volumes, registration of these data types is desired.
In this paper, we present two 2D–3D intermodal rigid-body registration methods for the mentioned purpose. One approach is based on Simulated Annealing (SA) while the other uses Chamfer Matching (CM). Both methods use Normalized Mutual Information for measuring the correspondence between an extracted 2D-slice from the volume and the 2D histological image whereas the latter approach also takes the edge distance into account for matching the implant boundary. To speed up the process, part of the computations are done on the Graphic Processing Unit.
The results show that the CM-approach provides a more reliable registration than the SA-approach. The registered slices with the CM-approach correspond visually well to the histological sections, except for cases where the implant has been damaged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hajnal, J.V., et al.: Medical Image Registration. CRC Press, Boca Raton (2000)
Milan, S., Michael, F.: Handbook of Medical Imaging. SPIE Press (2000)
Zöllei, L., Grimson, E., Norbash, A., Wells, W.: 2D-3D rigid registration of X-Ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators. CVPR 2, 696 (2001)
Russakoff, D.B., Rohlfing, T., Calvin, R., Maurer, J.: Fast intensity-based 2D-3D image registration of clinical data using light fields. ICCV 01, 416 (2003)
Kubias, A., et al.: Extended global optimization strategy for rigid 2D/3D image registration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 759–767. Springer, Heidelberg (2007)
Ino, F., et al.: A GPGPU approach for accelerating 2-D/3-D rigid registration of medical images. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 939–950. Springer, Heidelberg (2006)
Knaan, D., Joskowicz, L.: Effective intensity-based 2D/3D rigid registration between fluoroscopic X-ray and CT. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 351–358. Springer, Heidelberg (2003)
Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)
Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Trans. on Medical Imaging 22, 986–1004 (2003)
Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Sciene 220, 671–681 (1983)
Goldberg, D.: Genetic Algorithms in Optimization, Search and Machine Learning. Addison-Wesley, Reading (1989)
Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7, 152–162 (1977)
Lundqvist, R.: Atlas-Based Fusion of Medical Brain Images. PhD thesis, Uppsala University, Uppsala (2001)
Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techniques for image matching. In: Proc. 5th Int. Joint Conf. Artificial Intelligence, pp. 659–663 (1977)
Cai, J., et al.: CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method. International journal of radiation oncology 43, 871–883 (1999)
Lejdfors, C.: High-level GPU Programming. PhD thesis, Lund University (2008)
Hong, H., Kim, K., Park, S.: Fast 2D-3D point-based registration using GPU-based preprocessing for image-guided surgery. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 218–226. Springer, Heidelberg (2006)
Köhn, A., et al.: GPU accelerated image registration in two and three dimensions. In: Bildverarbeitung fur die Medizin 2006, pp. 261–265 (2006)
Johansson, C., Morberg, P.: Cutting directions of bone with biomaterials in situ does influence the outcome of histomorphometrical quantification. biomaterials 16, 1037–1039 (1995)
Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. In: PAMI, vol. 10(6), pp. 849–865 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sarve, H., Lindblad, J., Johansson, C.B. (2008). Registration of 2D Histological Images of Bone Implants with 3D SRμCT Volumes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_102
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_102
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)