[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Registration of 2D Histological Images of Bone Implants with 3D SRμCT Volumes

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

To provide better insight in bone modeling and remodeling around implants, information is extracted using different imaging techniques. Two types of data used in this project are 2D histological images and 3D SRμCT (synchrotron radiation-based computed microtomography) volumes. To enable a direct comparison between the two modalities and to bypass the time consuming and difficult task of manual annotation of the volumes, registration of these data types is desired.

In this paper, we present two 2D–3D intermodal rigid-body registration methods for the mentioned purpose. One approach is based on Simulated Annealing (SA) while the other uses Chamfer Matching (CM). Both methods use Normalized Mutual Information for measuring the correspondence between an extracted 2D-slice from the volume and the 2D histological image whereas the latter approach also takes the edge distance into account for matching the implant boundary. To speed up the process, part of the computations are done on the Graphic Processing Unit.

The results show that the CM-approach provides a more reliable registration than the SA-approach. The registered slices with the CM-approach correspond visually well to the histological sections, except for cases where the implant has been damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hajnal, J.V., et al.: Medical Image Registration. CRC Press, Boca Raton (2000)

    Google Scholar 

  2. Milan, S., Michael, F.: Handbook of Medical Imaging. SPIE Press (2000)

    Google Scholar 

  3. Zöllei, L., Grimson, E., Norbash, A., Wells, W.: 2D-3D rigid registration of X-Ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators. CVPR 2, 696 (2001)

    Google Scholar 

  4. Russakoff, D.B., Rohlfing, T., Calvin, R., Maurer, J.: Fast intensity-based 2D-3D image registration of clinical data using light fields. ICCV 01, 416 (2003)

    Google Scholar 

  5. Kubias, A., et al.: Extended global optimization strategy for rigid 2D/3D image registration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 759–767. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Ino, F., et al.: A GPGPU approach for accelerating 2-D/3-D rigid registration of medical images. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 939–950. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Knaan, D., Joskowicz, L.: Effective intensity-based 2D/3D rigid registration between fluoroscopic X-ray and CT. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 351–358. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)

    Article  Google Scholar 

  9. Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Trans. on Medical Imaging 22, 986–1004 (2003)

    Article  Google Scholar 

  10. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Sciene 220, 671–681 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, D.: Genetic Algorithms in Optimization, Search and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7, 152–162 (1977)

    MathSciNet  Google Scholar 

  13. Lundqvist, R.: Atlas-Based Fusion of Medical Brain Images. PhD thesis, Uppsala University, Uppsala (2001)

    Google Scholar 

  14. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techniques for image matching. In: Proc. 5th Int. Joint Conf. Artificial Intelligence, pp. 659–663 (1977)

    Google Scholar 

  15. Cai, J., et al.: CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method. International journal of radiation oncology 43, 871–883 (1999)

    Article  Google Scholar 

  16. Lejdfors, C.: High-level GPU Programming. PhD thesis, Lund University (2008)

    Google Scholar 

  17. Hong, H., Kim, K., Park, S.: Fast 2D-3D point-based registration using GPU-based preprocessing for image-guided surgery. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 218–226. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Köhn, A., et al.: GPU accelerated image registration in two and three dimensions. In: Bildverarbeitung fur die Medizin 2006, pp. 261–265 (2006)

    Google Scholar 

  19. Johansson, C., Morberg, P.: Cutting directions of bone with biomaterials in situ does influence the outcome of histomorphometrical quantification. biomaterials 16, 1037–1039 (1995)

    Article  Google Scholar 

  20. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. In: PAMI, vol. 10(6), pp. 849–865 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarve, H., Lindblad, J., Johansson, C.B. (2008). Registration of 2D Histological Images of Bone Implants with 3D SRμCT Volumes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics