[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Number Fields Ramified at One Prime

  • Conference paper
Algorithmic Number Theory (ANTS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5011))

Included in the following conference series:

  • 1413 Accesses

  • 9 Citations

Abstract

For G a finite group and p a prime, a G-p field is a Galois number field K with \(\mbox{Gal}(K/{\bf Q}) \cong G\) and \(\mbox{disc}(K) = \pm p^{a}\) for some a. We study the existence of G-p fields for fixed G and varying p.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belabas, K.: On quadratic fields with large 3-rank. Math. Comp. 73(248), 2061–2074 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Notices, rnm052–20 (2007)

    Google Scholar 

  3. Basmaji, J., Kiming, I.: A table of A 5-fields. In: On Artin’s Conjecture for Odd 2-Dimensional Representations. Lecture Notes in Math., vol. 1585, pp. 37–46, pp. 122–141. Springer, Berlin (1994)

    Chapter  Google Scholar 

  4. Cohen, H.: Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics, vol. 193. Springer, New York (2000)

    Google Scholar 

  5. Doud, D., Moore, M.W.: Even icosahedral Galois representations of prime conductor. J. Number Theory 118(1), 62–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harbater, D.: Galois groups with prescribed ramification. In: Arithmetic Geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174, pp. 35–60. Amer. Math. Soc., Providence (1994)

    Google Scholar 

  7. Hoelscher, J.-L.: Galois extensions ramified at one prime. PhD thesis, University of Pennsylvania (2007)

    Google Scholar 

  8. Jones, J.W., Roberts, D.P.: Sextic number fields with discriminant ( − 1)j2a3b. In: Number Theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes, vol. 19, pp. 141–172. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  9. Jones, J.W., Roberts, D.P.: Septic fields with discriminant ±2a3b. Math. Comp. 72(244), 1975–1985 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, J.W., Roberts, D.P.: A database of local fields. J. Symbolic Comput. 41(1), 80–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khare, C.: Serre’s modularity conjecture: the level one case. Duke Math. J. 134(3), 557–589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kiepert, L.: Ueber die Transformation der elliptischen Functionen bei zusammengesetztem Transformationsgrade. Math. Ann. 32(1), 1–135 (1888)

    Article  MathSciNet  Google Scholar 

  13. Klüners, J., Malle, G.: A database for field extensions of the rationals. LMS J. Comput. Math. 4, 182–196 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Malle, G.: On the distribution of Galois groups. J. Number Theory 92(2), 315–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Odlyzko, A.: Table 2: Unconditional bounds for discriminants (1976), http://www.dtc.umn.edu/~odlyzko/unpublished/discr.bound.table2

  16. The PARI Group, Bordeaux. PARI/GP, Version 2.3.2 (2006)

    Google Scholar 

  17. Roberts, D.P.: 3.G number fields for sextic and septic groups G (in preparation)

    Google Scholar 

  18. Swinnerton-Dyer, H.P.F.: On l-adic representations and congruences for coefficients of modular forms. In: Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972). Lecture Notes in Math., vol. 350, pp. 1–55. Springer, Berlin (1973)

    Chapter  Google Scholar 

  19. Serre, J.-P.: Valeurs propres des opérateurs de Hecke modulo l. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Astérisque 24–25, Soc. Math. France, Paris, pp. 109–117 (1975)

    Google Scholar 

  20. te Riele, H., Williams, H.: New computations concerning the Cohen-Lenstra heuristics. Experiment. Math. 12(1), 99–113 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred J. van der Poorten Andreas Stein

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, J.W., Roberts, D.P. (2008). Number Fields Ramified at One Prime. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79456-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79455-4

  • Online ISBN: 978-3-540-79456-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics