Abstract
For G a finite group and p a prime, a G-p field is a Galois number field K with \(\mbox{Gal}(K/{\bf Q}) \cong G\) and \(\mbox{disc}(K) = \pm p^{a}\) for some a. We study the existence of G-p fields for fixed G and varying p.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belabas, K.: On quadratic fields with large 3-rank. Math. Comp. 73(248), 2061–2074 (2004)
Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Notices, rnm052–20 (2007)
Basmaji, J., Kiming, I.: A table of A 5-fields. In: On Artin’s Conjecture for Odd 2-Dimensional Representations. Lecture Notes in Math., vol. 1585, pp. 37–46, pp. 122–141. Springer, Berlin (1994)
Cohen, H.: Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics, vol. 193. Springer, New York (2000)
Doud, D., Moore, M.W.: Even icosahedral Galois representations of prime conductor. J. Number Theory 118(1), 62–70 (2006)
Harbater, D.: Galois groups with prescribed ramification. In: Arithmetic Geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174, pp. 35–60. Amer. Math. Soc., Providence (1994)
Hoelscher, J.-L.: Galois extensions ramified at one prime. PhD thesis, University of Pennsylvania (2007)
Jones, J.W., Roberts, D.P.: Sextic number fields with discriminant ( − 1)j2a3b. In: Number Theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes, vol. 19, pp. 141–172. Amer. Math. Soc., Providence (1999)
Jones, J.W., Roberts, D.P.: Septic fields with discriminant ±2a3b. Math. Comp. 72(244), 1975–1985 (2003)
Jones, J.W., Roberts, D.P.: A database of local fields. J. Symbolic Comput. 41(1), 80–97 (2006)
Khare, C.: Serre’s modularity conjecture: the level one case. Duke Math. J. 134(3), 557–589 (2006)
Kiepert, L.: Ueber die Transformation der elliptischen Functionen bei zusammengesetztem Transformationsgrade. Math. Ann. 32(1), 1–135 (1888)
Klüners, J., Malle, G.: A database for field extensions of the rationals. LMS J. Comput. Math. 4, 182–196 (2001)
Malle, G.: On the distribution of Galois groups. J. Number Theory 92(2), 315–329 (2002)
Odlyzko, A.: Table 2: Unconditional bounds for discriminants (1976), http://www.dtc.umn.edu/~odlyzko/unpublished/discr.bound.table2
The PARI Group, Bordeaux. PARI/GP, Version 2.3.2 (2006)
Roberts, D.P.: 3.G number fields for sextic and septic groups G (in preparation)
Swinnerton-Dyer, H.P.F.: On l-adic representations and congruences for coefficients of modular forms. In: Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972). Lecture Notes in Math., vol. 350, pp. 1–55. Springer, Berlin (1973)
Serre, J.-P.: Valeurs propres des opérateurs de Hecke modulo l. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Astérisque 24–25, Soc. Math. France, Paris, pp. 109–117 (1975)
te Riele, H., Williams, H.: New computations concerning the Cohen-Lenstra heuristics. Experiment. Math. 12(1), 99–113 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jones, J.W., Roberts, D.P. (2008). Number Fields Ramified at One Prime. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-79456-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79455-4
Online ISBN: 978-3-540-79456-1
eBook Packages: Computer ScienceComputer Science (R0)