[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simultaneous Appearance Modeling and Segmentation for Matching People Under Occlusion

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

  • 2651 Accesses

Abstract

We describe an approach to segmenting foreground regions corresponding to a group of people into individual humans. Given background subtraction and ground plane homography, hierarchical part-template matching is employed to determine a reliable set of human detection hypotheses, and progressive greedy optimization is performed to estimate the best configuration of humans under a Bayesian MAP framework. Then, appearance models and segmentations are simultaneously estimated in an iterative sampling-expectation paradigm. Each human appearance is represented by a nonparametric kernel density estimator in a joint spatial-color space and a recursive probability update scheme is employed for soft segmentation at each iteration. Additionally, an automatic occlusion reasoning method is used to determine the layered occlusion status between humans. The approach is evaluated on a number of images and videos, and also applied to human appearance matching using a symmetric distance measure derived from the Kullback-Leiber divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, T., Nevatia, R.: Tracking Multiple Humans in Crowded Environment. In: CVPR (2004)

    Google Scholar 

  2. Smith, K., Perez, D.G., Odobez, J.M.: Using Particles to Track Varying Numbers of Interacting People. In: CVPR (2005)

    Google Scholar 

  3. Rittscher, J., Tu, P.H., Krahnstoever, N.: Simultaneous Estimation of Segmentation and Shape. In: CVPR (2005)

    Google Scholar 

  4. Elgammal, A.M., Davis, L.S.: Probabilistic Framework for Segmenting People Under Occlusion. In: ICCV (2001)

    Google Scholar 

  5. Mittal, A., Davis, L.S.: M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision (IJCV) 51(3), 189–203 (2003)

    Article  Google Scholar 

  6. Fleuret, F., Lengagne, R., Fua, P.: Fixed Point Probability Field for Complex Occlusion Handling. In: ICCV (2005)

    Google Scholar 

  7. Khan, S., Shah, M.: A Multiview Approach to Tracking People in Crowded Scenes using a Planar Homography Constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)

    Google Scholar 

  8. Kim, K., Davis, L.S.: Multi-Camera Tracking and Segmentation of Occluded People on Ground Plane using Search-Guided Particle Filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)

    Google Scholar 

  9. Tao, H., Sawhney, H., Kumar, R.: A Sampling Algorithm for Detecting and Tracking Multiple Objects. In: ICCV Workshop on Vision Algorithms (1999)

    Google Scholar 

  10. Isard, M., MacCormick, J.: BraMBLe: A Bayesian Multiple-Blob Tracker. In: ICCV (2001)

    Google Scholar 

  11. Scott, D.W.: Multivariate Density Estimation. Wiley Interscience, Chichester (1992)

    MATH  Google Scholar 

  12. Elgammal, A.M., Davis, L.S.: Probabilistic Tracking in Joint Feature-Spatial Spaces. In: CVPR (2003)

    Google Scholar 

  13. Zhao, L., Davis, L.S.: Iterative Figure-Ground Discrimination. In: ICPR (2004)

    Google Scholar 

  14. Zhao, L., Davis, L.S.: Segmentation and Appearance Model Building from An Image Sequence. In: ICIP (2005)

    Google Scholar 

  15. Wang, H., Suter, D.: Tracking and Segmenting People with Occlusions by A Simple Consensus based Method. In: ICIP (2005)

    Google Scholar 

  16. Lin, Z., Davis, L.S., Doermann, D., DeMenthon, D.: Hierarchical Part-Template Matching for Human Detection and Segmentation. In: ICCV (2007)

    Google Scholar 

  17. Lin, Z., Davis, L.S., Doermann, D., DeMenthon, D.: An Interactive Approach to Pose-Assisted and Appearance-based Segmentation of Humans. In: ICCV Workshop on Interactive Computer Vision (2007)

    Google Scholar 

  18. Yu, Y., Harwood, D., Yoon, K., Davis, L.S.: Human Appearance Modeling for Matching across Video Sequences. Special Issue on Machine Vision Applications (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Z., Davis, L.S., Doermann, D., DeMenthon, D. (2007). Simultaneous Appearance Modeling and Segmentation for Matching People Under Occlusion. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics