[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Controller Architecture for Safe Cognitive Technical Systems

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4680))

Included in the following conference series:

Abstract

Cognition of technical systems, as the ability to perceive situations, to learn about favorable behavior, and to autonomously generate decisions, adds new attributes to safety issues. The system can cope with heavily changing conditions but its future behavior is not known a-priori. Therefore, present software solutions to safety like a comprehensive analysis of the specification and its implementation according to e.g. the V-model are not sufficient. The paper proposes an architecture for safe cognitive controllers consisting of an operational and a strategic functional part. While the first provides certified safety, the strategic part computes safe strategies based on appropriate dynamic models, adapted sets of safety specifications, and learned knowledge about potentially safety critical scenarios. Thus, the architecture explicitly uses cognitive functions to achieve safe behavior, and it allows the application of cognitively controlled plants for safety-related tasks.

This work was partially supported by the cluster of excellence ’Cognition for Technical Systems’ (CoTeSys), funded by the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antsaklis, P.J, Passino, K.M.: An Introduction to Intelligent and Autonomous Control. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  2. Balluchi, A., Benvenuti, L., Engell, S., Geyer, T., Johansson, K.H., Lamnabhi-Lagarrigue, F., Lygeros, J., Morari, M., Papafotiou, G., Sangiovanni-Vincentelli, A.L., Santucci, F., Stursberg, O.: Hybrid Control of Networked Embedded Systems. European Journal of Control 11, 1–31 (2005)

    Article  MathSciNet  Google Scholar 

  3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: Proc. 5th IEEE Symp. on Logic in Comp. Science, pp. 1–33 (1990)

    Google Scholar 

  4. Boy, G.: Cognitive Function Analysis for Human-Centered Automation of Safety-Critical Systems. In: SIGCHI Conf. on Human Factors in Computing Systems (1998)

    Google Scholar 

  5. Carlos, D.M.P., Garcia, E., Morari, M.: Model Predictive Control, Theory and Practice - a Survey. Automatica 25, 335–348 (1989)

    Article  MATH  Google Scholar 

  6. Exida, L.L.C.: Safety Equipment Reliability Handbook, Exida, Sellesville, USA (2005)

    Google Scholar 

  7. Forin, P.: Vital Coded Microprocessor - Principles and Application for Various Transit Systems. In: IFAC Conf. Control, Comp., Comm. in Transp., pp. 79–84 (1989)

    Google Scholar 

  8. Goble, W.M.: Control Systems Safety Evaluation and Reliability. In: ISA (1998)

    Google Scholar 

  9. Grant, S.: Safety Systems and Cognitive Models. In: 5th Int. Conf. on Human-Machine Interaction and Artificial Intelligence in Aerospace  (1995)

    Google Scholar 

  10. Humphrey, D.W., Spada, S.: Siemens’ Safety Integrated Adds Value to Automation Applications. ARC Advisory Group (2005)

    Google Scholar 

  11. Humphrey, D.W., Grundmann, U.: PROFIsafe – Networked Safety for Process and Factory Automation. ARC Advisory Group (2006)

    Google Scholar 

  12. International Electrotechnical Commission: Functional Safety of Electrical Safety-related systems. IEC Standard No. 61508 (2001)

    Google Scholar 

  13. Johnson, T.R.: A comparison of ACT-R and SOAR. In: Schmid, U., Krems, J., Wysotzki, F. (eds.) Mind modeling, pp. 17–38, Papst Publisher (1998)

    Google Scholar 

  14. Kieras, D.: EPIC Architecture – Principle of Operation, Univ. of Michigan (2004)

    Google Scholar 

  15. Krosigk, H.: Functional Safety in the Field of Industrial Automation. Computing & Control Engineering Journal, 13–18 (2002)

    Google Scholar 

  16. Laird, J., Congdon, C., Coulter, K.: The Soar User’s Manual Version 8.6.3. University of Michigan (2006)

    Google Scholar 

  17. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and Optimality. Automatica 36, 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moor, T., Raisch, J., O’Young, S.D.: Discrete Supervisory Control of Hybrid Systems based on L-Complete Approximations. Journal of Discrete Event Dynamic Systems 12(1), 83–107 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schiller, F.: The Relation between Safety and Reliability in Automation from the Safety Perspective (Plenary Talk). In: 11th Int. Symp. on System-Modelling-Control, Poland, pp. 13–19 (2005)

    Google Scholar 

  20. Schultheis, H.: Distribution and Association: Modeling Two Fundamental Principles in Cognitive Control. In: Proc. German Cognitive Science Conf., pp. 177–182 (2005)

    Google Scholar 

  21. Sträter, O.: Cognition and Safety. Habilitation, Institut of Ergonomics, Technical University of Munich (2006)

    Google Scholar 

  22. Strube, G.: Modeling Motivation and Action Control in Cognitive Systems. In: Schmid, U., Krems, J., Wysotzki, F. (eds.) Mind modeling, pp. 89–108. Pabst Publisher (1998)

    Google Scholar 

  23. Stursberg, O., Panek, S.: Control of Switched Continuous Systems based on Disjunctive Formulations. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 421–435. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Stursberg, O., Lohmann, S., Engell, S.: Improving Dependability of Logic Contr. by Algor. Verification. 16th IFAC World Congr., ID: Mo-E17-TO/6 (2005)

    Google Scholar 

  25. Stursberg, O.: Supervisory Control of Hybrid Systems based on Model Abstraction and Refinement. Journal on Nonlinear Analysis 65(6), 1168–1187 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Trontis, A., Spathopoulos, M.P.: Supervisory Target Control for Hybrid Systems. Int. Journal of Control 76(11), 1142–1158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesca Saglietti Norbert Oster

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kain, S., Ding, H., Schiller, F., Stursberg, O. (2007). Controller Architecture for Safe Cognitive Technical Systems. In: Saglietti, F., Oster, N. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2007. Lecture Notes in Computer Science, vol 4680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75101-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75101-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75100-7

  • Online ISBN: 978-3-540-75101-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics