[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Decision Trees and Tree Automata for a~Syntactic Pattern Recognition Task

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2652))

Included in the following conference series:

Abstract

Decision trees have been widely used for different tasks in artificial intelligence and data mining. Tree automata have been used in pattern recognition tasks to represent some features of objects to be classified. Here we propose a method that combines both approaches to solve a classical problem in pattern recognition such as Optical Character Recognition. We propose a method which is organized in two stages: (1) we use a grammatical inference technique to represent some structural features of the characters and, (2) we obtain edit distances between characters in order to design a decision tree. The combination of both methods benefits from their individual characteristics and is formulated as a coherent unifying strategy.

Work supported by the Spanish CICYT under contract TIC2000-1153.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D., Smith, C.: Inductive Inference: Theory and Methods. Computing Surveys 15(3), 237–269 (1983)

    Article  MathSciNet  Google Scholar 

  2. García, P.: Learning k-testable tree sets from positive data. Technical Report DSIC II/46/1993. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia (1993)

    Google Scholar 

  3. García, P., Oncina, J.: Inference of recognizable tree sets. Technical Report DSIC II/47/1993. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia (1993)

    Google Scholar 

  4. Garris, M.D.: Design and Collection of a handwriting sample image database. Encycl. of Comp. Sci. & Tech. Marcel Dekker, N.Y. 31(suppl.16), 189–214 (1994)

    Google Scholar 

  5. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Co., Reading (1979)

    MATH  Google Scholar 

  6. Hunter, G.M., Steiglitz, K.: Operations on images using quad trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 145–153 (1979)

    Article  Google Scholar 

  7. López, D., Sempere, J.M., García, P.: Error Correcting Analysis for Tree Languages. International Journal on Pattern Recognition and Artificial Intelligence 14(3), 357–368 (2000)

    Article  Google Scholar 

  8. López, D., España, S.: Error-correcting tree language inference. Pattern Recognition Letters 23, 1–12 (2002)

    Article  Google Scholar 

  9. Michalski, R., Bratko, I., Kubat, M.: Machine Learning and Data Mining. Methods and Applications. John Wiley and Sons LTD, Chichester (1998)

    Google Scholar 

  10. Quinlan, J.R.: C 4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Quinlan’s, R.: Home Page, http://www.cse.unsw.edu.au/~quinlan/

  12. Sakakibara, Y.: Efficient learning of context-free grammars from positive structural examples. Information and Computation 97, 23–60 (1992)

    Article  MathSciNet  Google Scholar 

  13. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer Science 185, 15–45 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sempere, J.M., López, D. (2003). Learning Decision Trees and Tree Automata for a~Syntactic Pattern Recognition Task. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44871-6_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40217-6

  • Online ISBN: 978-3-540-44871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics