Abstract
Decision trees have been widely used for different tasks in artificial intelligence and data mining. Tree automata have been used in pattern recognition tasks to represent some features of objects to be classified. Here we propose a method that combines both approaches to solve a classical problem in pattern recognition such as Optical Character Recognition. We propose a method which is organized in two stages: (1) we use a grammatical inference technique to represent some structural features of the characters and, (2) we obtain edit distances between characters in order to design a decision tree. The combination of both methods benefits from their individual characteristics and is formulated as a coherent unifying strategy.
Work supported by the Spanish CICYT under contract TIC2000-1153.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D., Smith, C.: Inductive Inference: Theory and Methods. Computing Surveys 15(3), 237–269 (1983)
García, P.: Learning k-testable tree sets from positive data. Technical Report DSIC II/46/1993. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia (1993)
García, P., Oncina, J.: Inference of recognizable tree sets. Technical Report DSIC II/47/1993. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia (1993)
Garris, M.D.: Design and Collection of a handwriting sample image database. Encycl. of Comp. Sci. & Tech. Marcel Dekker, N.Y. 31(suppl.16), 189–214 (1994)
Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Co., Reading (1979)
Hunter, G.M., Steiglitz, K.: Operations on images using quad trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 145–153 (1979)
López, D., Sempere, J.M., García, P.: Error Correcting Analysis for Tree Languages. International Journal on Pattern Recognition and Artificial Intelligence 14(3), 357–368 (2000)
López, D., España, S.: Error-correcting tree language inference. Pattern Recognition Letters 23, 1–12 (2002)
Michalski, R., Bratko, I., Kubat, M.: Machine Learning and Data Mining. Methods and Applications. John Wiley and Sons LTD, Chichester (1998)
Quinlan, J.R.: C 4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Quinlan’s, R.: Home Page, http://www.cse.unsw.edu.au/~quinlan/
Sakakibara, Y.: Efficient learning of context-free grammars from positive structural examples. Information and Computation 97, 23–60 (1992)
Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer Science 185, 15–45 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sempere, J.M., López, D. (2003). Learning Decision Trees and Tree Automata for a~Syntactic Pattern Recognition Task. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_109
Download citation
DOI: https://doi.org/10.1007/978-3-540-44871-6_109
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40217-6
Online ISBN: 978-3-540-44871-6
eBook Packages: Springer Book Archive