Abstract
In this paper, we present optimal in time algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for d-dimensional images. In comparison to previous technics, the proposed Euclidean medial axis may contain less points than the classical medial axis.
Chapter PDF
Similar content being viewed by others
References
Blum, H.: A transformation for extracting descriptors of shape. In: Models for the Perception of Speech and Visual Forms, pp. 362–380. MIT Press, Cambridge (1967)
Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)
Borgefors, G., Nyström, I.: Efficient shape representation by minimizing the set of centers of maximal discs/spheres. Pattern Recognition Letters 18, 465–472 (1997)
Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, Bron, Laboratoire ERIC (December 2002)
Danielsson, P.E.: Euclidean distance mapping. CGIP 14, 227–248 (1980)
Sanniti di Baja, G.: Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J. Visual Communication and Image Representation 5, 107–115 (1994)
Hirata, T.: A unified linear-time algorithm for computing distance maps. Information Processing Letters 58(3), 129–133 (1996)
Maurer Jr., C.R., Raghavan, V., Qi, R.: A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In: Information Processing in Medical Imaging, pp. 358–364 (2001)
Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331–340. Kluwer, Dordrecht (2000)
Montanari, U.: Continuous skeletons from digitized images. Journal of the Association for Computing Machinery 16(4), 534–549 (1969)
Nilsson, F., Danielsson, P.-E.: Finding the minimal set of maximum disks for binary objects. Graphical models and image processing 59(1), 55–60 (1997)
Ragnemalm, I.: Contour processing distance transforms, pp. 204–211. World Scientific, Singapore (1990)
Ragnemalm, I.: The Euclidean Distance Transform. PhD thesis, Linköping University, Linköping, Sweden (1993)
Remy, E., Thiel, E.: Optimizing 3D chamfer masks with norm constraints. In: Int. Workshop on Combinatorial Image Analysis, pp. 39–56, Caen (July 2000)
Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the ACM 13(4), 471–494 (1966)
Rosenfeld, A., Pfalz, J.L.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)
Saito, T., Toriwaki, J.I.: New algorithms for Euclidean distance transformations of an n-dimensional digitized picture with applications. Pattern Recognition 27, 1551–1565 (1994)
Saito, T., Toriwaki, J.-I.: Reverse distance transformation and skeletons based upon the euclidean metric for n-dimensionnal digital pictures. IECE Trans. Inf. & Syst. E77-D(9), 1005–1016 (1994)
Thiel, E.: Géométrie des distances de chanfrein. Habilitation à Diriger des Recherches, Université de la Méditerranée, Aix-Marseille 2 (Décember 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coeurjolly, D. (2003). d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2003. Lecture Notes in Computer Science, vol 2886. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39966-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-39966-7_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20499-2
Online ISBN: 978-3-540-39966-7
eBook Packages: Springer Book Archive