[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Information-Theoretical Aspects of Embodied Artificial Intelligence

  • Chapter
Embodied Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3139))

Abstract

Embodied AI is a new approach to the design of autonomous intelligent systems. This chapter is about a new principle for the design of such systems that is deeply rooted in the notion of embodiment. Embodied action has causal effects on the nature and statistics of sensory inputs, which can in turn drive neural and cognitive processes. The statistics of sensory inputs can be captured by using methods from information theory, specifically measures of entropy, mutual information and complexity, on sensory data streams. Several such methods are outlined and their application to embodied AI systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nolfi, S., Parisi, D.: Self-Selection of Input Stimuli for Improving Performance. In: Bekey, G.A., Golberg, K.Y. (eds.) Neural Networks in Robotics, pp. 403–418 (1993)

    Google Scholar 

  2. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and Coherency: Integrating Information in the Brain. Trends Cogn. Sci. 2, 474–484 (1998)

    Article  Google Scholar 

  4. Simoncelli, E.P., Olshausen, B.A.: Natural Image Statistics and Neural Representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001)

    Article  Google Scholar 

  5. Tononi, G., Sporns, O., Edelman, G.M.: A Complexity Measure for Selective Matching of Signals by the Brain. Proc. Natl. Acad. Sci. USA 93, 3422–3427 (1996)

    Article  Google Scholar 

  6. Sporns, O., Tononi, G., Edelman, G.M.: Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices. Cerebral Cortex 10, 127–141 (2000)

    Article  Google Scholar 

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  8. Tononi, G., Sporns, O., Edelman, G.M.: A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System. Proc. Natl. Acad. Sci. USA 91, 5033–5037 (1994)

    Article  Google Scholar 

  9. Sporns, O., Tononi, G.: Classes of network connectivity and dynamics. Complexity 7, 28–38 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lungarella, M., Pfeifer, R.: Robots as Cognitive Tools: Information-Theoretic Analysis of Sensory-Motor Data. In: Proc. 2001 IEEE-RAS Intern. Conf. Humanoid Robots, pp. 245–252 (2001)

    Google Scholar 

  11. Sporns, O., Pegors, T.: Generating Structure in Sensory Data through Coordinated Motor Activity. In: Proceedings IJCNN 2003, p. 2796 (2003)

    Google Scholar 

  12. Fitzpatrick, P., Metta, G.: Grounding Vision through Experimental Manipulation. Phil. Trans. R. Soc. Lond. A 361, 2615–2625 (2003)

    MathSciNet  Google Scholar 

  13. Breazeal, C., Edsinger, A., Fitzpatrick, P., Scassellati, B.: Active Vision for Sociable Robots. IEEE Trans. Man Cybernetics Systems 31, 443–453 (2001)

    Article  Google Scholar 

  14. Scheier, C., Lambrinos, D.: Categorization in a Real-World Agent using Haptic Exploration and Active Perception. In: Proc. SAB 1996, pp. 65–74 (1996)

    Google Scholar 

  15. Almassy, N., Edelman, G.M., Sporns, O.: Behavioral Constraints in the Development of Neuronal Properties: A Cortical Model Embedded in a Real World Device. Cereb. Cortex 8, 346–361 (1998)

    Article  Google Scholar 

  16. Krichmar, J.L., Snook, J.A., Edelman, G.M., Sporns, O.: Experience-Dependent Perceptual Categorization in a Behaving Real-World Device. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H., Wilson, S.W. (eds.) Animals to Animats 6, pp. 41–50. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Sporns, O., Alexander, W.H.: Neuromodulation and Plasticity in an Autonomous Robot. Neural Netw. 15, 761–774 (2002)

    Article  Google Scholar 

  18. Alexander, W.H., Sporns, O.: An Embodied Model of Learning, Plasticity and Reward. Adapt. Beh. 10, 141–159 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sporns, O., Pegors, T.K. (2004). Information-Theoretical Aspects of Embodied Artificial Intelligence. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27833-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22484-6

  • Online ISBN: 978-3-540-27833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics