Abstract
Data mining (DM) is the extraction of regularities from raw data, which are further transformed within the wider process of knowledge discovery in databases (KDD) into non-trivial facts intended to support decision making. Formal concept analysis (FCA) offers an appropriate framework for KDD, whereby our focus here is on its potential for DM support. A variety of mining methods powered by FCA have been published and the figures grow steadily, especially in the association rule mining (ARM) field. However, an analysis of current ARM practices suggests the impact of FCA has not reached its limits, i.e., appropriate FCA-based techniques could successfully apply in a larger set of situations. As a first step in the projected FCA expansion, we discuss the existing ARM methods, provide a set of guidelines for the design of novel ones, and list some open algorithmic issues on the FCA side. As an illustration, we propose two on-line methods computing the minimal generators of a closure system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), Santiago, Chile, September 1994, pp. 487–499 (1994)
Ayan, N., Tansel, A., Arkun, M.: An efficient algorithm to update large itemsets with early pruning. In: Proceedings, KDD 1999, San Diego,CA, USA, pp. 287–291. ACM Press, New York (1999)
Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et combinatoire. Hachette (1970)
Birkhoff, G.: Lattice Theory, 3rd edn. AMS Colloquium Publications, vol. XXV. AMS (1967)
Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques et Sciences Humaines 96, 31–47 (1986)
Cheung, D.W., Han, J., Ng, V., Wong, C.Y.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: Proceedings, ICDE 1996, New Orleans, LA, USA, pp. 106–114 (1996)
Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1992)
Feldman, R., Aumann, Y., Amir, A., Mannila, H.: Efficient Algorithms for Discovering Frequent Sets in Incremental Databases. In: Proceedings, ACM SIGMOD Workshop DMKD 1997, Tucson, AZ, USA, pp. 59–70 (1997)
Ganter, B.: Two basic algorithms in concept analysis. preprint 831, Technische Hochschule, Darmstadt (1984)
Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)
Godin, R., Missaoui, R.: An Incremental Concept Formation Approach for Learning from Databases. Theoretical Computer Science 133, 378–419 (1994)
Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence 11(2), 246–267 (1995)
Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Sociales 95, 5–18 (1986)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
Kryszkiewicz, M.: Concise representations of association rules. In: Pattern Detection and Discovery, pp. 92–109 (2002)
Kuznetsov, S., Ob’edkov, S.: Comparing the performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 189–216 (2002)
Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et Sciences Humaines 29(113), 35–55 (1991)
Maier, D.: The theory of Relational Databases. Computer Science Press, Rockville (1983)
Mannila, H., Toivonen, H., Verkamo, A.: Efficient algorithms for discovering association rules. In: Fayyad, U., Uthurusamy, R. (eds.) Proceedings, AAAIWorkshop on Knowledge Discovery in Databases, Seattle, WA, USA, pp. 181–192. AAAI Press, Menlo Park (1994)
Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Information Processing Letters 71, 199–204 (1999)
O"re, O.: Galois connections. Transactions of the American Mathematical Society 55, 493–513 (1944)
Pan, F., Cong, G., Tung, A., Yang, J., Zaki, M.: Carpenter: Finding closed patterns in long biological datasets. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC (August 2003)
Pasquier, N.: Extraction de bases pour les règles d’association à partir des itemsets fermés fréquents. In: Proceedings of the 18th INFORSID 2000, Lyon, France, pp. 56–77 (2000)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Proceedings, ICDT 1999, Jerusalem, Israel, pp. 398–416 (1999)
Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)
Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. In: Proceedings, ACM SIGMOD Workshop DMK 20’00, Dallas, TX, USA, pp. 21–30 (2000)
Pfaltz, J., Taylor, C.: Scientific discovery through iterative transformations of concept lattices. In: Proceedings of the 1st International Workshop on Discrete Mathematics and Data Mining, Washington, DC, USA, April 2002, pp. 65–74 (2002)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering 42(2), 189–222 (2002)
Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases. In: Proceedings, KDD 19 New Port Beach, CA, USA, pp. 263–266 (1997)
Valtchev, P., Duquenne, V.: Towards scalable divide-and-conquer methods for computing concepts and implications. In: SanJuan, E., Berry, A., Sigayret, A., Napoli, A. (eds.) Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM 2003): Knowledge Discovery and Discrete Mathematics, Metz (FR), September 3-6, pp. 3–15. INRIA (2003)
Valtchev, P., Rouane Hacene, M., Missaoui, R.: A generic scheme for the design of efficient on-line algorithms for lattices. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 282–295. Springer, Heidelberg (2003)
Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: generalizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001)
Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating Frequent Itemsets Incrementally: Two Novel Approaches Based On Galois Lattice Theory. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 115–142 (2002)
Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)
Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC, USA (2003)
Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)
Wille, R.: Why can concept lattices support knowledge discovery in databases. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 81–92 (2002)
Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC (2003)
Yan, X., Han, J., Afshar, R.: CloSpan: Mining Closed Sequential Patterns in Large Datasets. In: Grossman, R., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings of the 3rd SIAM International Conference on Data Mining (ICDM 2003), San Fransisco, CA (2003)
Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concurency 7(4), 14–25 (1999)
Zaki, M.J.: Generating Non-Redundant Association Rules. In: Proceedings, KDD 2000, Boston, MA, USA, pp. 34–43 (2000)
Zaki, M.J., Hsiao, C.-J.: CHARM: An Efficiently Algorithm for Closed Itemset Mining. In: Grossman, R., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings of the 2nd SIAM International Conference on Data Mining, ICDM 2002 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valtchev, P., Missaoui, R., Godin, R. (2004). Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges. In: Eklund, P. (eds) Concept Lattices. ICFCA 2004. Lecture Notes in Computer Science(), vol 2961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24651-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-24651-0_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21043-6
Online ISBN: 978-3-540-24651-0
eBook Packages: Springer Book Archive