[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges

  • Conference paper
Concept Lattices (ICFCA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2961))

Included in the following conference series:

Abstract

Data mining (DM) is the extraction of regularities from raw data, which are further transformed within the wider process of knowledge discovery in databases (KDD) into non-trivial facts intended to support decision making. Formal concept analysis (FCA) offers an appropriate framework for KDD, whereby our focus here is on its potential for DM support. A variety of mining methods powered by FCA have been published and the figures grow steadily, especially in the association rule mining (ARM) field. However, an analysis of current ARM practices suggests the impact of FCA has not reached its limits, i.e., appropriate FCA-based techniques could successfully apply in a larger set of situations. As a first step in the projected FCA expansion, we discuss the existing ARM methods, provide a set of guidelines for the design of novel ones, and list some open algorithmic issues on the FCA side. As an illustration, we propose two on-line methods computing the minimal generators of a closure system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), Santiago, Chile, September 1994, pp. 487–499 (1994)

    Google Scholar 

  2. Ayan, N., Tansel, A., Arkun, M.: An efficient algorithm to update large itemsets with early pruning. In: Proceedings, KDD 1999, San Diego,CA, USA, pp. 287–291. ACM Press, New York (1999)

    Chapter  Google Scholar 

  3. Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et combinatoire. Hachette (1970)

    Google Scholar 

  4. Birkhoff, G.: Lattice Theory, 3rd edn. AMS Colloquium Publications, vol. XXV. AMS (1967)

    Google Scholar 

  5. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques et Sciences Humaines 96, 31–47 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Cheung, D.W., Han, J., Ng, V., Wong, C.Y.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: Proceedings, ICDE 1996, New Orleans, LA, USA, pp. 106–114 (1996)

    Google Scholar 

  7. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  8. Feldman, R., Aumann, Y., Amir, A., Mannila, H.: Efficient Algorithms for Discovering Frequent Sets in Incremental Databases. In: Proceedings, ACM SIGMOD Workshop DMKD 1997, Tucson, AZ, USA, pp. 59–70 (1997)

    Google Scholar 

  9. Ganter, B.: Two basic algorithms in concept analysis. preprint 831, Technische Hochschule, Darmstadt (1984)

    Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)

    Google Scholar 

  11. Godin, R., Missaoui, R.: An Incremental Concept Formation Approach for Learning from Databases. Theoretical Computer Science 133, 378–419 (1994)

    Article  MathSciNet  Google Scholar 

  12. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence 11(2), 246–267 (1995)

    Article  Google Scholar 

  13. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Sociales 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  14. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  15. Kryszkiewicz, M.: Concise representations of association rules. In: Pattern Detection and Discovery, pp. 92–109 (2002)

    Google Scholar 

  16. Kuznetsov, S., Ob’edkov, S.: Comparing the performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  17. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et Sciences Humaines 29(113), 35–55 (1991)

    MathSciNet  Google Scholar 

  18. Maier, D.: The theory of Relational Databases. Computer Science Press, Rockville (1983)

    MATH  Google Scholar 

  19. Mannila, H., Toivonen, H., Verkamo, A.: Efficient algorithms for discovering association rules. In: Fayyad, U., Uthurusamy, R. (eds.) Proceedings, AAAIWorkshop on Knowledge Discovery in Databases, Seattle, WA, USA, pp. 181–192. AAAI Press, Menlo Park (1994)

    Google Scholar 

  20. Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Information Processing Letters 71, 199–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. O"re, O.: Galois connections. Transactions of the American Mathematical Society 55, 493–513 (1944)

    MathSciNet  Google Scholar 

  22. Pan, F., Cong, G., Tung, A., Yang, J., Zaki, M.: Carpenter: Finding closed patterns in long biological datasets. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC (August 2003)

    Google Scholar 

  23. Pasquier, N.: Extraction de bases pour les règles d’association à partir des itemsets fermés fréquents. In: Proceedings of the 18th INFORSID 2000, Lyon, France, pp. 56–77 (2000)

    Google Scholar 

  24. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Proceedings, ICDT 1999, Jerusalem, Israel, pp. 398–416 (1999)

    Google Scholar 

  25. Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  26. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. In: Proceedings, ACM SIGMOD Workshop DMK 20’00, Dallas, TX, USA, pp. 21–30 (2000)

    Google Scholar 

  27. Pfaltz, J., Taylor, C.: Scientific discovery through iterative transformations of concept lattices. In: Proceedings of the 1st International Workshop on Discrete Mathematics and Data Mining, Washington, DC, USA, April 2002, pp. 65–74 (2002)

    Google Scholar 

  28. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering 42(2), 189–222 (2002)

    Article  MATH  Google Scholar 

  29. Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases. In: Proceedings, KDD 19 New Port Beach, CA, USA, pp. 263–266 (1997)

    Google Scholar 

  30. Valtchev, P., Duquenne, V.: Towards scalable divide-and-conquer methods for computing concepts and implications. In: SanJuan, E., Berry, A., Sigayret, A., Napoli, A. (eds.) Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM 2003): Knowledge Discovery and Discrete Mathematics, Metz (FR), September 3-6, pp. 3–15. INRIA (2003)

    Google Scholar 

  31. Valtchev, P., Rouane Hacene, M., Missaoui, R.: A generic scheme for the design of efficient on-line algorithms for lattices. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 282–295. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: generalizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating Frequent Itemsets Incrementally: Two Novel Approaches Based On Galois Lattice Theory. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 115–142 (2002)

    Article  MATH  Google Scholar 

  34. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC, USA (2003)

    Google Scholar 

  36. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  37. Wille, R.: Why can concept lattices support knowledge discovery in databases. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 81–92 (2002)

    Article  MATH  Google Scholar 

  38. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD 2003), Washington, DC (2003)

    Google Scholar 

  39. Yan, X., Han, J., Afshar, R.: CloSpan: Mining Closed Sequential Patterns in Large Datasets. In: Grossman, R., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings of the 3rd SIAM International Conference on Data Mining (ICDM 2003), San Fransisco, CA (2003)

    Google Scholar 

  40. Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concurency 7(4), 14–25 (1999)

    Article  Google Scholar 

  41. Zaki, M.J.: Generating Non-Redundant Association Rules. In: Proceedings, KDD 2000, Boston, MA, USA, pp. 34–43 (2000)

    Google Scholar 

  42. Zaki, M.J., Hsiao, C.-J.: CHARM: An Efficiently Algorithm for Closed Itemset Mining. In: Grossman, R., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings of the 2nd SIAM International Conference on Data Mining, ICDM 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valtchev, P., Missaoui, R., Godin, R. (2004). Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges. In: Eklund, P. (eds) Concept Lattices. ICFCA 2004. Lecture Notes in Computer Science(), vol 2961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24651-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24651-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21043-6

  • Online ISBN: 978-3-540-24651-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics