[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity

  • Conference paper
Large-Scale Scientific Computing (LSSC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2907))

Included in the following conference series:

Abstract

In many application areas, it is important to detect outliers. Traditional engineering approach to outlier detection is that we start with some ”normal” values x 1,...,x n , compute the sample average E, the sample standard variation σ, and then mark a value x as an outlier if x is outside the k 0-sigma interval [E − k 0·σ,E + k 0·σ] (for some pre-selected parameter k 0). In real life, we often have only interval ranges \([{\underline x}_i,{\overline x}_i]\) for the normal values x 1,...,x n . In this case, we only have intervals of possible values for the bounds E-k 0·σ and E+k 0·σ. We can therefore identify outliers as values that are outside all k 0-sigma intervals. In this paper, we analyze the computational complexity of these outlier detection problems, and provide efficient algorithms that solve some of these problems (under reasonable conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Devore, J., Peck, R.: Statistics: the Exploration and Analysis of Data. Duxbury, California (1999)

    Google Scholar 

  2. Ferregut, C., Osegueda, R.A., Nuñez, A. (eds.): Proceedings of the International Workshop on Intelligent NDE Sciences for Aging and Futuristic Aircraft, El Paso, TX, September 30-October 2 (1997)

    Google Scholar 

  3. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Computing Variance for Interval Data is NP-Hard. ACM SIGACT News 33(2), 108–118 (2002)

    Article  Google Scholar 

  4. Ferson, S., Ginzburg, L., Kreinovich, V., Aviles, M.: Exact Bounds on Sample Variance of Interval Data. In: Extended Abstracts of the 2002 SIAM Workshop on Validated Computing, Toronto, Canada, pp. 67–69 (2002)

    Google Scholar 

  5. Goodchild, M., Gopal, S.: Accuracy of Spatial Databases. Taylor & Francis, London (1989)

    Google Scholar 

  6. Gros, X.E.: NDT Data Fusion. J. Wiley, London (1997)

    Google Scholar 

  7. Kosheleva, O., Cabrera, S., Osegueda, R., Nazarian, S., George, D.L., George, M.J., Kreinovich, V., Worden, K.: Case study of non-linear inverse problems: mammography and non-destructive evaluation. In: Mohamad-Djafari, A. (ed.) Bayesian Inference for Inverse Problems, Proceedings of the SPIE/International Society for Optical Engineering, San Diego, CA, vol. 3459, pp. 128–135 (1998)

    Google Scholar 

  8. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and feasibility of data processing and interval computations. Kluwer, Dordrecht (1997)

    Google Scholar 

  9. McCain, M., William, C.: Integrating Quality Assurance into the GIS Project Life Cycle. In: Proceedings of the 1998 ESRI Users Conference, http://www.dogcreek.com/html/documents.html

  10. Osegueda, R., Kreinovich, V., Potluri, L., Aló, R.: Non-Destructive Testing of Aerospace Structures: Granularity and Data Mining Approach. In: Proceedings of FUZZ-IEEE 2002, Honolulu, Hawaii, May 12-17, vol. 1, pp. 685–689 (2002)

    Google Scholar 

  11. Osegueda, R.A., Seelam, S.R., Holguin, A.C., Kreinovich, V., Tao, C.-W.: Statistical and Dempster-Shafer Techniques in Testing Structural Integrity of Aerospace Structures. International Journal of Uncertainty, Fuzziness, Knowledge-Based Systems (IJUFKS) 9, 749–758 (2001)

    MATH  Google Scholar 

  12. Rabinovich, S.: Measurement Errors: Theory and Practice. American Institute of Physics, New York (1993)

    Google Scholar 

  13. Scott, L.: Identification of GIS Attribute Error Using Exploratory Data Analysis. Professional Geographer 46, 378–386 (1994)

    Article  Google Scholar 

  14. Vavasis, S.A.: Nonlinear optimization: complexity issues. Oxford University Press, N.Y. (1991)

    MATH  Google Scholar 

  15. Wadsworth Jr., H.M. (ed.): Handbook of statistical methods for engineers and scientists. McGraw-Hill Publishing Co., N.Y (1990)

    Google Scholar 

  16. Wen, Q., Gates, A.Q., Beck, J., Kreinovich, V., Keller, G.R.: Towards automatic detection of erroneous measurement results in a gravity database. In: Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference, Tucson, Arizona, October 7-10, pp. 2170–2175 (2001)

    Google Scholar 

  17. Worden, K., Osegueda, R., Ferregut, C., Nazarian, S., George, D.L., George, M.J., Kreinovich, V., Kosheleva, O., Cabrera, C.: Interval Methods in Non- Destructive Testing of Material Structures. Reliable Computing 7, 341–352 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kreinovich, V., Longpré, L., Patangay, P., Ferson, S., Ginzburg, L. (2004). Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24588-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21090-0

  • Online ISBN: 978-3-540-24588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics