[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Assessing Strategic Readiness for Healthcare Analytics: System and Design Theory Implications

  • Conference paper
  • First Online:
Designing for a Digital and Globalized World (DESRIST 2018)

Abstract

The adoption of analytics solutions in hospitals is a recent trend aimed at fact-based decision making and data-driven performance management. However, the adoption of analytics involves diverse stakeholder perspectives. Currently, there is a paucity of studies that focus on how the practitioners assess their organizational readiness for health analytics (HA) and make informed decisions on technology adoption given a set of alternatives. We fill this gap with our study by designing a strategic assessment framework guided by a DSRM approach that iteratively extends our past artifact. Our approach first entails the use of many in-depth case-studies, as well as embedded experts from the industry to inform the objective setting and design process. These inputs are then supported by two multi-criteria decision-making methods. We also evaluate our framework with healthcare practitioners for both design validity and future iterations of this project. Implications of our work for theory of design and action are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Groves, P., Kayyali, B., Knott, D., Van Kuiken, S.: The “big data”revolution in healthcare. McKinsey Q. 22 (2013)

    Google Scholar 

  2. Ammenwerth, E., Brender, J., Nykänen, P., Prokosch, H.U., Rigby, M., Talmon, J.: Visions and strategies to improve evaluation of health information systems: reflections and lessons based on the HIS-EVAL workshop in Innsbruck. Int. J. Med. Inform. 73, 479–491 (2004)

    Article  Google Scholar 

  3. Raghupathi, W., Tan, J.: Information systems and healthcare: charting a strategic path for health information technology. Commun. Assoc. Inf. Syst. 23, 501–522 (2008)

    Google Scholar 

  4. Venkatraman, S., Sundarraj, R.P., Seethamraju, R.: Healthcare Analytics Adoption-Decision Model: A Case Study. In: 2015 Proceedings of the PACIS (2015)

    Google Scholar 

  5. Ward, M.J., Marsolo, K.A., Froehle, C.M.: Applications of business analytics in healthcare. Bus. Horiz. 57, 571–582 (2014)

    Article  Google Scholar 

  6. Lavalle, S., Hopkins, M.S., Lesser, E., Shockley, R., Kruschwitz, N.: Analytics: the new path to value. MIT Sloan Manag. Rev. 52(1), 1–24 (2010)

    Google Scholar 

  7. Sherer, S.A.: Advocating for action design research on IT value creation in healthcare. J. Assoc. Inf. Syst. 15, 860–878 (2014)

    Google Scholar 

  8. Cortada, J.W., Gordon, D., Lenihan, B.: The value of analytics in healthcare. IBM Institute for Business Value Healthcare (2010)

    Google Scholar 

  9. Venkatraman, S., Sundarraj, R.P., Mukherjee, A.: Prototype design of a healthcare-analytics pre-adoption readiness assessment (HAPRA) instrument. In: Parsons, J., Tuunanen, T., Venable, J., Donnellan, B., Helfert, M., Kenneally, J. (eds.) DESRIST 2016. LNCS, vol. 9661, pp. 158–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39294-3_11

    Chapter  Google Scholar 

  10. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2008)

    Article  Google Scholar 

  11. Martilla, J.A., James, J.C.: Importance-performance analysis. J. Mark. 41, 77–79 (1977)

    Article  Google Scholar 

  12. Gabus, A., Fontela, E.: The DEMATEL observer - DEMATEL 1976 Report - Battelle Geneva Research Center, Geneva, Switzerland (1976)

    Google Scholar 

  13. Shneiderman, B., Plaisant, C., Hesse, B.W.: Improving healthcare with interactive visualization. IEEE Comput. Soc. 46, 58–66 (2013)

    Article  Google Scholar 

  14. Songthung, P., Sripanidkulchai, K., Luangruangrong, P., Sakulbumrungsil, R.C., Udomaksorn, S., Kessomboon, N., Kanchanaphibool, I.: An innovative decision support service for improving pharmaceutical acquisition capabilities. In: 2012 Annual SRII Global Conference, pp. 628–636 (2012)

    Google Scholar 

  15. Peck, J.S., Benneyan, J.C., Nightingale, D.J., Gaehde, S.A.: Characterizing the value of predictive analytics in facilitating hospital patient flow. IIE Trans. Healthc. Syst. Eng. 4, 135–143 (2014)

    Article  Google Scholar 

  16. Aktaş, E., Ülengin, F., Önsel Şahin, Ş.: A decision support system to improve the efficiency of resource allocation in healthcare management. Socio-Econ. Plann. Sci. 41, 130–146 (2007)

    Article  Google Scholar 

  17. Davenport, T.H., Harris, J.G.: Competing on Analytics: The New Science of Winning. Harvard Business Press, Boston (2007)

    Google Scholar 

  18. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results (1986)

    Google Scholar 

  19. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46, 186–204 (2000)

    Article  Google Scholar 

  20. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)

    Article  Google Scholar 

  21. DeLone, W.H., McLean, E.R.: The DeLone and McLean model of information systems success: a ten-year update. J. Manag. Inf. Syst. 19, 9–30 (2003)

    Article  Google Scholar 

  22. Hikmet, N., Bhattacherjee, A., Menachemi, N., Kayhan, V.O., Brooks, R.G.: The role of organizational factors in the adoption of healthcare information technology in Florida hospitals. Health Care Manag. Sci. 11, 1–9 (2008)

    Article  Google Scholar 

  23. Yu, P.: A multi-method approach to evaluate health information systems. Stud. Health Technol. Inform. 160, 1231–1235 (2010)

    Google Scholar 

  24. Brooks, P., El-Gayar, O., Sarnikar, S.: A framework for developing a domain specific business intelligence maturity model: application to healthcare. Int. J. Inf. Manage. 35, 337–345 (2015)

    Article  Google Scholar 

  25. Yusof, M.M., Kuljis, J., Papazafeiropoulou, A., Stergioulas, L.K.: An evaluation framework for health information systems: human, organization and technology-fit factors (HOT-fit). Int. J. Med. Inform. 77, 386–398 (2008)

    Article  Google Scholar 

  26. Davis, M.W.: The seven stages of EMR adoption: majority of hospitals are in stage 3 and rising. Healthc. Exec. 25, 18–19 (2010)

    Google Scholar 

  27. Sanders, D., Burton, D., Protti, D.: The healthcare analytics adoption model (HAAM): a framework and roadmap. https://www.healthcatalyst.com/white-paper/healthcare-analytics-adoption-model

  28. Malladi, S.: Adoption of business intelligence & analytics in organizations – an empirical study of antecedents. In: 2013 Proceedings of the AMCIS, vol. 2016, pp. 1–11 (2013)

    Google Scholar 

  29. Ghosh, B., Scott, J.E.: Antecedents and catalysts for developing a healthcare analytic capability. Commun. Assoc. Inf. Syst. 29, 395–410 (2011)

    Google Scholar 

  30. Myers, B.L., Kappelman, L.A., Prybutok, V.R.: A comprehensive model for assessing the quality and productivity of the information systems function. Inf. Resour. Manag. J. 10, 6–26 (1997)

    Article  Google Scholar 

  31. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information quality assessment. Inf. Manag. 40, 133–146 (2002)

    Article  Google Scholar 

  32. Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 2, 192–222 (1991)

    Article  Google Scholar 

  33. Ebner, K., Mueller, B., Urbach, N., Riempp, G., Krcmar, H.: Assessing IT management’s performance: a design theory for strategic IT benchmarking. IEEE Trans. Eng. Manag. 63, 113–126 (2016)

    Article  Google Scholar 

  34. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Article  Google Scholar 

  35. Zhang, N.J., Seblega, B., Wan, T., Unruh, L., Agiro, A., Miao, L.: Health information technology adoption in U.S. acute care hospitals. J. Med. Syst. 37(2), 9907 (2013)

    Article  Google Scholar 

  36. Tornatzky, L.G., Fleischer, M., Chakrabarti, A.K.: The processes of technological innovation (1990)

    Google Scholar 

  37. Purao, S., Storey, V.C.: Evaluating the adoption potential of design science efforts: the case of APSARA. Decis. Support Syst. 44, 369–381 (2008)

    Article  Google Scholar 

  38. Han, T., Purao, S., Storey, V.C.: Generating large-scale repositories of reusable artifacts for conceptual design of information systems. Decis. Support Syst. 45, 665–680 (2008)

    Article  Google Scholar 

  39. Skok, W., Kophamel, A., Richardson, I.: Diagnosing information systems success: importance-performance maps in the health club industry. Inf. Manag. 38, 409–419 (2001)

    Article  Google Scholar 

  40. Ahmadi, H., Nilashi, M., Ibrahim, O.: Organizational decision to adopt hospital information system: an empirical investigation in the case of Malaysian public hospitals. Int. J. Med. Inform. 84, 166–188 (2015)

    Article  Google Scholar 

  41. Amiri, M., Salehi, J., Payani, N., Shafieezadeh, M.: Developing a DEMATEL method to prioritize distribution centers in supply chain. Manag. Sci. Lett. 1, 279–288 (2011)

    Article  Google Scholar 

  42. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

  43. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8, 312–335 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayanan Venkatraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkatraman, S., Sundarraj, R.P., Seethamraju, R. (2018). Assessing Strategic Readiness for Healthcare Analytics: System and Design Theory Implications. In: Chatterjee, S., Dutta, K., Sundarraj, R. (eds) Designing for a Digital and Globalized World. DESRIST 2018. Lecture Notes in Computer Science(), vol 10844. Springer, Cham. https://doi.org/10.1007/978-3-319-91800-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91800-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91799-3

  • Online ISBN: 978-3-319-91800-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics