[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Path Set Packing Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

In this paper, we study a variant of set packing, in which a set P of paths in a graph \(G=(V,E)\) is given, the goal is to find a maximum number of edge-disjoint paths of P. We show that the problem is NP-hard even if each path in P contains at most three edges, while it is hard to approximate within \(O(|E|^{1/2-\epsilon })\) for the general case unless \(NP=ZPP\). In the positive aspect, a parameterized algorithm relying on the maximum degree and the tree-width of G is derived. For tree networks, we present a polynomial time optimal algorithm.

This work was partially supported by NSFC Grant 11531014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horing, S., Menard, J., Staehler, R., Yokelson, B.: Stored program controlled network: overview. Bell Syst. Tech. J. 61(7), 1579–1588 (1982)

    Article  Google Scholar 

  2. Kuipers, F.A.: An overview of algorithms for network survivability. ISRN Commun. Netw. 2012, 24 (2012)

    Google Scholar 

  3. Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness, pp. 90–91. W. H. Freeman and Company, San Francisco (1979)

    Google Scholar 

  4. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). In: Acta Mathematica, pp. 627–636 (1996)

    Google Scholar 

  5. Halldórsson, M.Ú.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 176–187. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055051

    Chapter  Google Scholar 

  6. Halldórsson, M.Ú.M.: Approximations of independent sets in graphs. In: Jansen, K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 1–13. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053959

    Chapter  Google Scholar 

  7. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

    Article  MathSciNet  Google Scholar 

  8. Halldórsson, M.Ú.M.: Approximating discrete collections via local improvements. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169 (1995)

    Google Scholar 

  9. Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatching assignment problem. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Aymposium on Discrete Algorithms, SIAM, pp. 342–351 (2013)

    Chapter  Google Scholar 

  10. Sviridenko, M., Ward, J.: Large neighborhood local search for the maximum set packing problem. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 792–803. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_67

    Chapter  Google Scholar 

  11. Fellows, M.R., Downey, R.G.: Parameterized Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  12. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. J. Algorithms 50(1), 106–117 (2004)

    Article  MathSciNet  Google Scholar 

  13. Koutis, I.: A faster parameterized algorithm for set packing. Inf. Process. Lett. 94(1), 7–9 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0_29

    Chapter  MATH  Google Scholar 

  15. Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf. Process. Lett. 110(16), 621–624 (2010)

    Article  MathSciNet  Google Scholar 

  16. Chen, L., Ye, D., Zhang, G.: An improved lower bound for rank four scheduling. Oper. Res. Lett. 42(5), 348–350 (2014)

    Article  MathSciNet  Google Scholar 

  17. Micali, S., Vazirani, V.V.: An O(\(\sqrt{|V|}|{E}|\)) algorithm for finding maximum matching in general graphs. In: Proceedings of the Twenty-First Annual Symposium on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

  18. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, C., Zhang, G. (2018). The Path Set Packing Problem. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics