[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Textual Emotion Classification: An Interoperability Study on Cross-Genre Data Sets

  • Conference paper
  • First Online:
AI 2017: Advances in Artificial Intelligence (AI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10400))

Included in the following conference series:

Abstract

This paper describes the application and analysis of a previously developed textual emotion classification system (READ-BioMed-EC) on a different data set in the same language with different textual properties. The classifier makes use of a number of lexicon-based and text-based features. The data set originally used to develop this classifier consisted of English-language Twitter microblogs with mentions of Ebola disease. The data was manually labelled with one of six emotion classes, plus sarcasm, news-related, or neutral. In this new work, we applied the READ-BioMed-EC emotion classifier without retraining to an independently collected set of Web blog posts, also annotated with emotion classes, to understand how well the Twitter-trained disease-focused emotion classifier might generalise to an entirely different collection of open-domain sentences. The results of our study show that direct cross-genre application of the classifier does not achieve meaningful results, but when re-trained on the open-domain data set, the READ-BioMed-EC system outperforms the previously published results. The study has implications for cross-genre applicability of emotion classifiers, demonstrating that emotion is expressed differently in different text types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, A., An, A.: Unsupervised emotion detection from text using semantic and syntactic relations. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 01, pp. 346–353 (2012)

    Google Scholar 

  2. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, pp. 579–586. Association for Computational Linguistics, Stroudsburg, PA, USA (2005). http://dx.doi.org/10.3115/1220575.1220648

  3. Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS, vol. 4629, pp. 196–205. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74628-7_27

    Chapter  Google Scholar 

  4. Aman, S., Szpakowicz, S.: Using roget’s thesaurus for fine-grained emotion recognition. In: Proceedings of the Third International Joint Conference on Natural Language Processing, pp. 296–302 (2008)

    Google Scholar 

  5. Balabantaray, R., Mohammad, M., Sharma, N.: Multi-class Twitter emotion classification: a new approach. Int. J. Appl. Inform. Syst. 4, 48–53 (2012)

    Article  Google Scholar 

  6. Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s Mechanical Turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6(1), 3–5 (2011)

    Article  Google Scholar 

  7. Danisman, T., Alpkocak, A.: Feeler: emotion classification of text using vector space model. In: Proceedings of the AISB 2008 Convention, Communication, Interaction and Social Intelligence, Scotland (2008)

    Google Scholar 

  8. Ekman, P.: Universals and cultural differences in facial expression of emotion. In: Nebraska Symposium on Motivation, Lincoln, Nebraska, pp. 207–283 (1972)

    Google Scholar 

  9. Jain, M.C., Kulkarni, V.: TexEmo: conveying emotion from text - the study. Int. J. Comput. Appl. 86, 43–50 (2014)

    Google Scholar 

  10. Li, S., Huang, L., Wang, R., Zhou, G.: Sentence-level emotion classification with label and context dependence. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 1045–1053 (2015)

    Google Scholar 

  11. Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41, 1742–1749 (2014)

    Article  Google Scholar 

  12. Liu, B.: Sentiment Analysis and Opinion Mining, Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  13. Masum, S.A., Prendinger, H., Ishizuka, M.: Emotion sensitive news agent: an approach towards user centric emotion sensing from the news. In: Proceedings of the International Conference on Web Intelligence, IEEE/WIC/ACM, pp. 614–620 (2007)

    Google Scholar 

  14. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002). http://mallet.cs.umass.edu

  15. Milne, D., Paris, C., Christensen, H., Batterham, P., O’Dea, B.: We feel: taking the emotional pulse of the world. In: Proceedings of the 19th Triennial Congress of the International Ergonomics Association, Melbourne, Australia (2015)

    Google Scholar 

  16. Ofoghi, B., Mann, M., Verspoor, K.: Towards early discovery of salient health threats: a social media emotion classification technique. In: Proceedings of Pacific Symposium on Biocomputing (PSB), Hawaii, US, pp. 504–515 (2016)

    Google Scholar 

  17. Ofoghi, B., Siddiqui, S., Verspoor, K.: READ-BioMed-SS: adverse drug reaction classification of microblogs using emotional and conceptual enrichment. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing, Hawaii, US (2016)

    Google Scholar 

  18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, Philadelphia, PA, US, vol. 10, pp. 79–86 (2002)

    Google Scholar 

  19. Schulz, A., Thanh, T.D., Paulheim, H., Schweizer, I.: A fine-grained sentiment analysis approach for detecting crisis related microposts. In: Geldermann, J., Muller, T., Fortier, S., Comes, F. (eds.) Proceedings of the 10th International Conference on Information Systems for Crisis Response and Management, pp. 846–851 (2013)

    Google Scholar 

  20. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment Treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2013), Seattle, USA (2013)

    Google Scholar 

  21. Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The general inquirer: a computer approach to content analysis. Am. J. Sociol. 73(5), 634–635 (1968)

    Article  Google Scholar 

  22. Valitutti, R.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, pp. 1083–1086 (2004)

    Google Scholar 

  23. Wan, S., Paris, C.: Understanding public emotional reactions on Twitter. In: Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK (2015)

    Google Scholar 

  24. Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing Twitter “big data” for automatic emotion identification. In: Proceedings of the International Conference on Privacy, Security, Risk and Trust and the 2012 International Confernece on Social Computing (SocialCom), Amsterdam, pp. 587–592 (2012)

    Google Scholar 

  25. Wang, X., Zheng, Q.: Text emotion classification research based on improved latent semantic analysis algorithm. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, pp. 210–213 (2013)

    Google Scholar 

  26. Wen, S., Wan, X.: Emotion classification in microblog texts using class sequential rules. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Quebec City, Canada, pp. 187–193 (2014)

    Google Scholar 

Download references

Acknowledgments

We thank Saima Aman and Stan Szpakowicz for sharing their Web blog data set with us for the purpose of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahadorreza Ofoghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ofoghi, B., Verspoor, K. (2017). Textual Emotion Classification: An Interoperability Study on Cross-Genre Data Sets. In: Peng, W., Alahakoon, D., Li, X. (eds) AI 2017: Advances in Artificial Intelligence. AI 2017. Lecture Notes in Computer Science(), vol 10400. Springer, Cham. https://doi.org/10.1007/978-3-319-63004-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63004-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63003-8

  • Online ISBN: 978-3-319-63004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics