[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Temporal-Spatial Aggregated Urban Air Quality Inference with Heterogeneous Big Data

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

Recently air quality information has drawn much attention from public and researchers as deteriorated air quality extremely damages human health. Meanwhile the limiting number of air quality monitor stations and complexity of influencing factors on air quality raise the starving demand on future air quality prediction. In this paper we propose a temporal-spatial aggregated urban air quality inference framework using the heterogeneous temporal and spatial datasets to infer the future air quality. We deeply analyse the influencing factors on air quality in terms of temporal and spatial features and then elaborately design a linear regression-based inference model with offline parameters learning and real time predicting. We not only estimate the parameters for our model itself, but also estimate the correlation parameters of single factor on the air quality in order that the model can make prediction on future air quality precisely. Based on real data sources, we appraise our approach with extensive experiments in Beijing and Suzhou. The results show that with the superior parameters learning, our model overmatches a series of state-of-art and commonly used approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://pm25.in.

  2. 2.

    http://datacenter.mep.gov.cn.

  3. 3.

    http://www.nmc.cn.

  4. 4.

    http://www.weather.com.cn.

  5. 5.

    http://www.geonames.org.

  6. 6.

    http://dbpedia.org.

References

  1. Bridle, J.S.: ProbabIlistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing. NATO ASI Series, pp. 227–236. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  2. Burrows, W.R., Benjamin, M., Beauchamp, S., et al.: CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada. J. Appl. Meteorol. 34(8), 1848–1862 (1995)

    Article  Google Scholar 

  3. Granger, C.W.J.Investigating causal relations by econometric models, cross-spectral methods. Econometrica J. Econometric Soc. 424–438 (1969)

    Google Scholar 

  4. Hooyberghs, J., Mensink, C., Dumont, G., et al.: A neural network forecast for daily average PM 10 concentrations in Belgium. Atmos. Environ. 39(18), 3279–3289 (2005)

    Article  Google Scholar 

  5. Jiang, Y., Li, K., Tian, L., et al.: MAQS: a personalized mobile sensing system for indoor air quality monitoring. In: Proceedings of the 13th international conference on Ubiquitous computing, pp. 271–280. ACM (2011)

    Google Scholar 

  6. Jha, D.K., Sabesan, M., Das, A., et al.: Evaluation of interpolation technique for air quality parameters in Port Blair, India. Univ. J. Environ. Res. Technol. 1(3), 301–310 (2011)

    Google Scholar 

  7. Lu, W.Z., Wang, W.J.: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends. Chemosphere 59(5), 693–701 (2005)

    Article  Google Scholar 

  8. Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ. 42(34), 7823–7843 (2008)

    Article  Google Scholar 

  9. Song, L., Pang, S., Longley, I., et al.: Spatio-temporal PM 2.5 prediction by spatial data aided incremental support vector regression. In: International Joint Conference on Neural Networks (IJCNN), 2014, pp. 623–630. IEEE (2011)

    Google Scholar 

  10. Van Donkelaar, A., Martin, R.V., Park, R.J.: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 111(D21) (2006)

    Google Scholar 

  11. Wong, D.W., Yuan, L., Perlin, S.A.: Comparison of spatial interpolation methods for the estimation of air quality data. J. Exposure Sci. Environ. Epidemiol. 14(5), 404–415 (2004)

    Article  Google Scholar 

  12. Zhang, Y., Bocquet, M., Mallet, V., et al.: Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012)

    Article  Google Scholar 

  13. Zhang, Y., Bocquet, M., Mallet, V., et al.: Real-time air quality forecasting, part II: state of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)

    Article  Google Scholar 

  14. Zheng, Y., Liu, F., Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1436–1444. ACM (2013)

    Google Scholar 

  15. Zheng, Y., Yi, X., Li, M., et al.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery, Data Mining, pp. 2267–2276. ACM (2015)

    Google Scholar 

  16. Zhu, J.Y., Sun, C., Li, V.O.K.: Granger-Causality-based air quality estimation with spatio-temporal (ST) heterogeneous big data. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2015, pp. 612–617. IEEE (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61572456, No.61379131) and the Natural Science Foundation of Jiangsu Province of China (No. BK20151241, No. BK20151239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, X., Wang, Y., Huang, L., Yang, W., Shen, Y. (2016). Temporal-Spatial Aggregated Urban Air Quality Inference with Heterogeneous Big Data. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics