[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Behavior-Based Systems

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multi-robot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAAI:

American Association for Artificial Intelligence

APOC:

allowing dynamic selection and changes

AuRA:

autonomous robot architecture

BLE:

broadcast of local eligibility

BP:

behavior primitive

CEC:

Congress on Evolutionary Computation

DEA:

differential elastic actuator

EMIB:

emotion, motivation and intentional behavior

FP:

fusion primitive

HBBA:

hybrid behavior-based architecture

HRI:

human–robot interaction

IRL:

in real life

MBA:

motivated behavioral architecture

MVERT:

move value estimation for robot teams

RL:

reinforcement learning

SLAM:

simultaneous localization and mapping

References

  1. J.S. Albus: Outline for a theory of intelligence, IEEE Trans. Syst. Man Cybern. 21(3), 473–509 (1991)

    MathSciNet  Google Scholar 

  2. G. Girald, R. Chatila, M. Vaisset: An integrated navigation and motion control system for autonomous multisensory mobile robots, Proc. 1st Int. Symp. Robotics Res. (1983)

    Google Scholar 

  3. H. Moravec, A. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (1995)

    Google Scholar 

  4. J. Laird, P. Rosenbloom: An investigation into reactive planning in complex domains, Proc. 9th Natl. Conf. Am. Assoc. Artif. Intell. (1990) pp. 1022–1029

    Google Scholar 

  5. N.J. Nilsson: Shakey the Robot, Tech. Rep. No. 325 (SRI International, Menlo Park 1984)

    Google Scholar 

  6. S.J. Rosenschein, L.P. Kaelbling: A situated view of representation and control, Artif. Intell. 73, 149–173 (1995)

    Google Scholar 

  7. R.A. Brooks: Elephants don't play chess. In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 3–15

    Google Scholar 

  8. R. Brooks, J. Connell: Asynchrounous distributed control system for a mobile robot, Proc. SPIE Intell. Control Adapt. Syst. (1986) pp. 77–84

    Google Scholar 

  9. R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robotics Autom. RA-2(1), 14–23 (1986)

    Google Scholar 

  10. P.E. Agre, D. Chapman: Pengi: An implementation of a theory of activity, Proc. 6th Natl. Conf. Am. Assoc. Artif. Intell. (1987) pp. 268–272

    Google Scholar 

  11. R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)

    Google Scholar 

  12. M. Schoppers: Universal plans for reactive robots in unpredictable domains, Proc. Int. Jt. Conf. Artif. Intell. (1987) pp. 1039–1046

    Google Scholar 

  13. P.E. Agre, D. Chapman: What are plans for? In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 17–34

    Google Scholar 

  14. G.N. Saridis: Intelligent robotic control, IEEE Trans. Autom. Control AC-28(5), 547–557 (1983)

    MathSciNet  MATH  Google Scholar 

  15. R.J. Firby: An investigation into reactive planning in complex domains, Proc. AAAI Conf. (1987) pp. 202–206

    Google Scholar 

  16. R. Arkin: Towards the unification of navigational planning and reactive control, Proc. Am. Assoc. Artif. Intell., Spring Symp. Robotics Navig. (1989) pp. 1–5

    Google Scholar 

  17. C. Malcolm, T. Smithers: Symbol grounding via a hybrid architecture in an autonomous assembly system. In: Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 123–144

    Google Scholar 

  18. J.H. Connell: SSS: A hybrid architecture applied to robot navigation, Proc. IEEE Int. Conf. Robotics Autom. (1992) pp. 2719–2724

    Google Scholar 

  19. E. Gat: Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots, Proc. Natl. Conf. Artif. Intell. (1992) pp. 809–815

    Google Scholar 

  20. M. Georgeoff, A. Lansky: Reactive reasoning and planning, Proc. 6th Natl.Conf. Am. Assoc. Artif. Intell. (1987) pp. 677–682

    Google Scholar 

  21. B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P. Nayak, M. Wagner, B. Williams: An autonomous spacecraft agent prototype, Auton. Robots 1-2(5), 1–27 (1998)

    Google Scholar 

  22. R.C. Arkin: Behavior-Based Robotics (MIT Press, Cambridge 1998)

    Google Scholar 

  23. M.J. Matarić: Reinforcement learning in the multi-robot domain, Auton. Robots 4(1), 73–83 (1997)

    Google Scholar 

  24. P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.P. Miller, M.G. Slack: Experiences with an architecture for intelligent reactive agents, Proc. Int. Jt. Conf. Artif. Intell. (1995)

    Google Scholar 

  25. M. Goller, T. Kerscher, J.M. Zollner, R. Dillmann, M. Devy, T. Germa, F. Lerasle: Setup and control architecture for an interactive shopping cart in human all day environments, Proc. Int. Conf. Adv. Robotics (2009) pp. 1–6

    Google Scholar 

  26. P. Pirjanian: Multiple objective behavior-based control, Robotics Auton. Syst. 31(1-2), 53–60 (2000)

    Google Scholar 

  27. P. Pirjanian: Behavior Coordination Mechanisms – State-of-the-Art, Tech. Rep. IRIS-99-375 (Univ. of Southern California, Institute of Robotics and Intelligent Systems, Los Angeles 1999) pp. 99–375

    Google Scholar 

  28. M. Scheutz, V. Andronache: Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems, IEEE Trans. Syst. Man Cybern. B 34(6), 2377–2395 (2004)

    Google Scholar 

  29. M. Proetzsch, T. Luksch, K. Berns: Development of complex robotic systems using the behavior-based control architecture iB2C, Robotics Auton. Syst. 58(1), 46–67 (2010)

    Google Scholar 

  30. D. Payton, D. Keirsey, D. Kimble, J. Krozel, J. Rosenblatt: Do whatever works: A robust approach to fault-tolerant autonomous control, Appl. Intell. 2(3), 225–250 (1992)

    Google Scholar 

  31. P. Maes: Situated agents can have goals. In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 49–70

    Google Scholar 

  32. P. Maes: The dynamics of action selection, Proc. Int. Jt. Conf. Artif. Intell. (1989) pp. 991–997

    Google Scholar 

  33. B.A. Towle, M. Nicolescu: Real-world implementation of an Auction Behavior-Based Robotic Architecture (ABBRA), Proc. IEEE Int. Conf. Technol. Pract. Robot Appl. (2012) pp. 79–85

    Google Scholar 

  34. B.A. Towle, M. Nicolescu: Fusing multiple sensors through behaviors with the distributed architecture, Proc. IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (2010) pp. 115–120

    Google Scholar 

  35. A. Saffiotti: The uses of fuzzy logic in autonomous robot navigation, Soft Comput. 1, 180–197 (1997)

    Google Scholar 

  36. F. Michaud: Selecting behaviors using fuzzy logic, Proc. IEEE Int. Conf. Fuzzy Syst. (1997)

    Google Scholar 

  37. E. Gat: On three-layer architectures. In: Artificial Intelligence and Mobile Robotics, ed. by D. Kortenkamp, R. Bonasso, R. Murphy (MIT/AAAI Press, Cambridge 1998)

    Google Scholar 

  38. M.J. Matarić: Integration of representation into goal-driven behavior-based robots, IEEE Trans. Robotics Autom. 8(3), 304–312 (1992)

    Google Scholar 

  39. M.J. Matarić: Navigating with a rat brain: A neurobiologically-inspired model for robot spatial representation, From animals to animats. Proc. 1st Int. Conf. Simul. Adapt. Behav. (1990) pp. 169–175

    Google Scholar 

  40. M. Nicolescu, M.J. Matarić: Experience-based representation construction: Learning from human and robot teachers, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2001) pp. 740–745

    Google Scholar 

  41. M. Nicolescu, M.J. Matarić: A hierarchical architecture for behavior-based robots, Proc. Int. Jt. Conf. Auton. Agents Multiagent Syst. (2002)

    Google Scholar 

  42. L.E. Parker: ALLIANCE: An architecture for fault tolerant multirobot cooperation, IEEE Trans. Robotics Autom. 14(2), 220–240 (1998)

    Google Scholar 

  43. M.J. Matarić: Designing and understanding adaptive group behavior, Adapt. Behav. 4(1), 50–81 (1995)

    Google Scholar 

  44. C. Raïevsky, F. Michaud: Improving situated agents adaptability using interruption theory of emotions, From animals to animats. Proc. Int. Conf. Simul. Adapt. Behav. (2008) pp. 301–310

    Google Scholar 

  45. F. Michaud, G. Lachiver, C.T. Le Dinh: Architectural methodology based on intentional configuration of behaviors, Comput. Intell. 17(1), 132–156 (2001)

    Google Scholar 

  46. F. Michaud: EMIB–Computational architecture based on emotion and motivation for intentional selection and configuration of behaviour-producing modules, Cogn. Sci. Q. 3-4, 340–361 (2002)

    Google Scholar 

  47. F. Michaud, M.T. Vu: Managing robot autonomy and interactivity using motives and visual communication, Proc. Int. Conf. Auton. Agents (1999) pp. 160–167

    Google Scholar 

  48. O. Petterson, L. Karlsson, A. Saffiotti: Model-free execution monitoring in behavior-based robotics, IEEE Trans. Syst. Man Cybern. 37(4), 890–901 (2007)

    Google Scholar 

  49. F. Michaud, M.J. Matarić: Learning from history for behavior-based mobile robots in non-stationary environments, Auton. Robots 5(3/4), 335–354 (1998)

    MATH  Google Scholar 

  50. F. Michaud, M.J. Matarić: Learning from history for behavior-based mobile robots in non-stationary environments II, Auton. Robots 31(3-4), 335–354 (1998)

    MATH  Google Scholar 

  51. F. Michaud, M.J. Matarić: Representation of behavioral history for learning in nonstationary conditions, Robotics Auton. Syst. 29(2), 1–14 (1999)

    Google Scholar 

  52. O.C. Jenkins, M.J. Matarić: Deriving action and behavior primitives from human motion data, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2002) pp. 2551–2556

    Google Scholar 

  53. O.C. Jenkins, M.J. Matarić: Automated derivation of behavior vocabularies for autonomous humanoid motion, Proc. 2nd Int. Jt. Conf. Auton. Agents Multiagent Syst. (2003)

    Google Scholar 

  54. M.J. Matarić: Designing emergent behaviors: From local interactions to collective intelligence, From animals to animats 2. Proc. 2nd Int. Conf. Simul. Adapt. Behav. (1992) pp. 432–441

    Google Scholar 

  55. S. Saripalli, D.J. Naffin, G.S. Sukhatme: Autonomous flying vehicle research at the University of Southern California, Proc. 1st Int. Work. Multi-Robot Syst. (2002) pp. 73–82

    Google Scholar 

  56. M.J. Matarić: Behavior-based control: Examples from navigation, learning, and group behavior, J. Exp. Theor. Artif. Intell. 9(2-3), 323–336 (1997)

    Google Scholar 

  57. P. Maes, R.A. Brooks: Learning to coordinate behaviors, Proc. 8th Natl. Conf. Artif. Intell. AAAI (1990) pp. 796–802

    Google Scholar 

  58. H. Yanco, L.A. Stein: An adaptive communication protocol for cooperating mobile robots, From animals to animats 3. Proc 3rd Int. Conf. Simul. Adapt. Behav. (1993) pp. 478–485

    Google Scholar 

  59. J.R. del Millàn: Learning efficient reactive behavioral sequences from basic reflexes in a goal-directed autonomous robot, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 266–274

    Google Scholar 

  60. L. Parker: Learning in cooperative robot teams, Proc. Int. Jt. Conf. Artif. Intell. (1993) pp. 12–23

    Google Scholar 

  61. M.J. Matarić: Learning to behave socially, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 453–462

    Google Scholar 

  62. M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, K. Hosoda: Coordination of multiple behaviors acquired by a vision-based reinforcement learning, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (1994)

    Google Scholar 

  63. J. McCarthy: Making robots conscious of their mental states, AAAI Spring Symp. (1995)

    Google Scholar 

  64. T. Smithers: On why better robots make it harder, From animals to animats. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 64–72

    Google Scholar 

  65. D. McFarland, T. Bösser: Intelligent Behavior in Animals and Robots (MIT Press, Cambridge 1993)

    Google Scholar 

  66. P. Maes: A bottom-up mechanism for behavior selection in an artificial creature, From animals to animats. Proc. 1st Int. Conf. Simul. Adapt. Behav. (1991) pp. 238–246

    Google Scholar 

  67. B.M. Blumberg, P.M. Todd, P. Maes: No bad dogs: Ethological lessons for learning in Hamsterdam, From animals to animats. Proc. Int. Conf. Simul. Adapt. Behav., ed. by P. Maes, M.J. Matarić, J.-A. Meyer, J. Pollack, S.W. Wilson (1996) pp. 295–304

    Google Scholar 

  68. C. Breazeal, B. Scassellati: Infant-like social interactions between a robot and a human caregiver, Adapt. Behav. 8(1), 49–74 (2000)

    Google Scholar 

  69. F. Michaud, P. Pirjanian, J. Audet, D. Létourneau: Artificial emotion and social robotics. In: Distributed Autonomous Robotic Systems, ed. by L.E. Parker, G. Bekey, J. Barhen (Springer, Tokyo 2000) pp. 121–130

    Google Scholar 

  70. A. Stoytchev, R. Arkin: Incorporating motivation in a hybrid robot architecture, J. Adv. Comput. Intell. Intell. Inf. 8(3), 269–274 (2004)

    Google Scholar 

  71. S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Artif. Intell. 55, 311–365 (1992)

    Google Scholar 

  72. J. Kober, A. Wilhelm, E. Oztop, J. Peters: Reinforcement learning to adjust parametrized motor primitives to new situations, Auton. Robots 33, 361–379 (2012)

    Google Scholar 

  73. M.J. Matarić: Reward functions for accelerated learning, Proc. 11th Int. Conf. Mach. Learn., New Brunswick, ed. by W.W. Cohen, H. Hirsh (Morgan Kauffman, Boston 1994) pp. 181–189

    Google Scholar 

  74. H. Gleitman: Psychology (Norton, New York 1981)

    Google Scholar 

  75. M. Dorigo, M. Colombetti: Robot Shaping: An Experiment in Behavior Engineering (MIT Press, Cambridge 1997)

    Google Scholar 

  76. M. Nicolescu, M.J. Matarić: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybern. 31(5), 419–430 (2001)

    Google Scholar 

  77. M. Nicolescu, O.C. Jenkins, A. Olenderski, E. Fritzinger: Learning behavior fusion from demonstration, Interact. Stud. 9(2), 319–352 (2008)

    Google Scholar 

  78. R.C. Arkin: Motor schema based navigation for a mobile robot: An approach to programming by behavior, Proc. IEEE Int. Conf. Robotics Autom. (1987) pp. 264–271

    Google Scholar 

  79. S.B. Reed, T.R.C. Reed, M. Nicolescu, S.M. Dascalu: Recursive, hyperspherical behavioral learning for robotic control, Proc. IEEE World Autom. Congr. (2010) pp. 1–8

    Google Scholar 

  80. A. Olenderski, M. Nicolescu, S. Louis: A behavior-based architecture for realistic autonomous ship control, Proc. IEEE Symp. Comput. Intell. Games (2006)

    Google Scholar 

  81. M. Nicolescu, O.C. Jenkins, A. Olenderski: Learning behavior fusion estimation from demonstration, Proc. IEEE Int. Symp. Robot Hum. Interact. Commun. (2006) pp. 340–345

    Google Scholar 

  82. J.M. Peula, C. Urdiales, I. Herrero, I. Sánchez-Tato, F. Sandoval: Pure reactive behavior learning using case based reasoning for a vision based 4-legged robot, Robotics Auton. Syst. 57(67), 688–699 (2009)

    Google Scholar 

  83. S. Huang, E. Aertbelien, H. Van Brussel, H. Bruyninckx: A behavior-based approach for task learning on mobile manipulators, Proc. 41st Int. Symp. Robotics 6th Ger. Conf. Robotics (2010) pp. 1–6

    Google Scholar 

  84. A.K. McCallum: Hidden state and reinforcement learning with instance-based state identification, IEEE Trans. Syst. Man Cybern. B 26(3), 464–473 (1996)

    Google Scholar 

  85. E. Jauregi, I. Irigoien, B. Sierra, E. Lazkano, C. Arenas: Loop-closing: A typicality approach, Robotics Auton. Syst. 59(3-4), 218–227 (2011)

    Google Scholar 

  86. D.J. Harvey, T.-F. Lu, M.A. Keller: Comparing insect-inspired chemical plume tracking algorithms using a mobile robot, IEEE Trans. Robotics 24(2), 307–317 (2008)

    Google Scholar 

  87. A. Agha, G. Bekey: Phylogenetic and ontogenetic learning in a colony of interacting robots, Auton. Robots 4(1), 85–100 (1997)

    Google Scholar 

  88. R.A. Brooks, L. Stein: Building brains for bodies, Auton. Robots 1(1), 7–25 (1994)

    Google Scholar 

  89. B. Webb: Robotic experiments in cricket phonotaxis, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 45–54

    Google Scholar 

  90. C. Liu, K. Conn, N. Sakar, W. Stone: Online affect detection and robot behavior adaptation for intervention of children with autism, IEEE Trans. Robotics 24(4), 883–896 (2008)

    Google Scholar 

  91. N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, N. Hagita: Adapting robot behavior for human–robot interaction, IEEE Trans. Robotics 24(4), 911–916 (2008)

    Google Scholar 

  92. J.-W. Yoon, S.-B. Cho: An intelligent synthetic character for smartphone with Bayesian networks and behavior selection networks, Expert Syst. Appl. 39(12), 11284–11292 (2012)

    Google Scholar 

  93. A. Brunete, M. Hernando, E. Gambao, J.E. Torres: A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots, Robotics Auton. Syst. 60(12), 1607–1624 (2012)

    Google Scholar 

  94. J.L. Jones: Robots at the tipping point, IEEE Robotics Autom. Mag. 13(1), 76–78 (2006)

    Google Scholar 

  95. M.F. Selekwa, D.D. Dunlap, D. Shi, E.G. Collins Jr.: Robot navigation in very cluttered environments by preference-based fuzzy behaviors, Robotics Auton. Syst. 56(3), 231–246 (2008)

    Google Scholar 

  96. P. Rusu, E.M. Petriu, T.E. Whalen, A. Coronell, H.J.W. Spoelder: Behavior-based neuro-fuzzy controller for mobile robot navigation, IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003)

    Google Scholar 

  97. R. Huq, G.K.I. Mann, R.G. Gosine: Behaviour modulation technique in mobile robotics using fuzzy discrete event system, IEEE Trans. Robotics 22, 903–916 (2006)

    Google Scholar 

  98. J.S. Cepeda, L. Chaimowicz, R. Soto, J.L. Gordillo, E.A. Alanís-Reyes, L.C. Carrillo-Arce: A behavior-based strategy for single and multi-robot autonomous exploration, Sensors 12(9), 12772–12797 (2012)

    Google Scholar 

  99. A. Marino, L. Parker, G. Antonelli, F. Caccavale: A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling, J. Intell. Robotic Syst. 71(3-4), 423–444 (2013)

    Google Scholar 

  100. L.E. Parker: Current research in multirobot systems, Artif. Life Robotics 7(1–2), 1–5 (2003)

    Google Scholar 

  101. L.E. Parker, M. Chandra, F. Tang: Enabling autonomous sensor-sharing for tightly-coupled cooperative tasks, Proc. 1st Int. Work. Multi-Robot Syst. (2005) pp. 119–230

    Google Scholar 

  102. B.B. Werger, M.J. Matarić: Broadcast of Local Eligibility for Multi-Target Observation, Proc. 5th Int. Conf. Distrib. Auton. Robotics Syst. (2000) pp. 347–356

    Google Scholar 

  103. B.P. Gerkey, M.J. Matarić: Principled communication for dynamic multi-robot task allocation, Lect. Notes Control Inform. Sci. 271, 353–362 (2001)

    Google Scholar 

  104. B.P. Gerkey, M.J. Matarić: Sold!: Auction methods for multi-robot coordination, IEEE Trans. Robotics Autom. 18(5), 758–768 (2002)

    Google Scholar 

  105. B.P. Gerkey, M.J. Matarić: Pusher-watcher: An approach to fault-tolerant tightly-coupled robot coordination, Proc. IEEE Int. Conf. Robotics Autom. (2002) pp. 464–469

    Google Scholar 

  106. B. Akin, A.M. Aydan, I. Erkmen: A behavior based layered, hybrid, control architecture for robot/sensor networks, Proc. IEEE Int. Conf. Robotics Autom. (2006) pp. 206–211

    Google Scholar 

  107. N. Sedat, E. Aydan: A fractal conductivity-based approach to mobile sensor networks in a potential field, Int. J. Adv. Manuf. Technol. 37(7), 732–746 (2008)

    Google Scholar 

  108. L. Iocchi, D. Nardi, M. Piaggio, A. Sgorbissa: Distributed coordination in heterogeneous multi-robot systems, Auton. Robots 15(2), 155–168 (2004)

    Google Scholar 

  109. M. Batalin, G. Sukhatme: Coverage, exploration and deployment by a mobile robot and communication network, Telecommun. Syst. 26(2–4), 181–196 (2004)

    Google Scholar 

  110. A.W. Stroupe, T. Balch: Value-based action selection for observation with robot teams using probabilistic techniques, Robotics Auton. Syst. 50(2–3), 85–97 (2005)

    Google Scholar 

  111. R. Simmons, T. Smith, M.B. Dias, D. Goldberg, D. Hershberger, A. Stentz, R. Zlot: A Layered Architecture for coordination of mobile robots, Proc. NRL Work. Multi-Robot Syst. (2002)

    Google Scholar 

  112. J. Nembrini, A. Winfield, C. Melhuish: Minimalist coherent swarming of wireless networked autonomous mobile robots, Proc. 7th Int. Conf. Simul. Adapt. Behav. (2002) pp. 373–382

    Google Scholar 

  113. M. Egerstedt, X. Hu: Formation constrained multi-agent control, IEEE Trans. Robotics Autom. 17(6), 947–951 (2001)

    Google Scholar 

  114. C.H. Tan, K.C. Tan, A. Tay: Computationally efficient behaviour based controller for real time car racing simulation, Expert Syst. Appl. 37(7), 4850–4859 (2010)

    Google Scholar 

  115. K. Gold, B. Scassellati: Learning about the self and others through contingency, AAAI Spring Symp. Dev. Robotics (2005)

    Google Scholar 

  116. M. Baker, H.A. Yanco: Automated street crossing for assistive robots, Proc. Int. Conf. Rehabil. Robotics (2005) pp. 187–192

    Google Scholar 

  117. M. Williamson: Postural primitives: Interactive behavior for a humanoid robot arm, Proc. Int. Conf. Simul. Adapt. Behav. (1996)

    Google Scholar 

  118. M. Marjanovic, B. Scassellati, M. Williamson, R. Brooks: The Cog Project: Building a humanoid robot, Lect. Notes Artif. Intell. 1562, 52–87 (1998)

    Google Scholar 

  119. A. Edsinger: Robot Manipulation in Human Environments, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 2007)

    Google Scholar 

  120. C. Breazeal: Infant-like social interactions between a robot and a human caretaker, Adapt. Behav. 8(1), 49–74 (2000)

    Google Scholar 

  121. H. Ishiguro, T. Kanda, K. Kimoto, T. Ishida: A robot architecture based on situated modules, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (1999) pp. 1617–1623

    Google Scholar 

  122. T. Kanda, T. Hirano, D. Eaton, H. Ishiguro: Person identification and interaction of social robots by using wireless tags, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (2003) pp. 1657–1664

    Google Scholar 

  123. F. Michaud, J.F. Laplante, H. Larouche, A. Duquette, S. Caron, D. Létourneau, P. Masson: Autonomous spherical mobile robotic to study child development, IEEE Trans. Syst. Man. Cybern. 35(4), 1–10 (2005)

    Google Scholar 

  124. F. Michaud, S. Caron: Roball, the rolling robot, Auton. Robots 12(2), 211–222 (2002)

    MATH  Google Scholar 

  125. F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J.-M. Valin, É. Beaudry, C. Raïevsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M.-A. Roux, S. Caron, P. Frenette, F. Kabanza: Spartacus attending the 2005 AAAI Conference, Auton. Robots 12(2), 211–222 (2007)

    Google Scholar 

  126. F. Michaud, Y. Brosseau, C. Côté, D. Létourneau, P. Moisan, A. Ponchon, C. Raïevsky, J.-M. Valin, E. Beaudry, F. Kabanza: Modularity and integration in the design of a socially interactive robot, Proc. IEEE Int. Work. Robot Hum. Interact. Commun. (2005) pp. 172–177

    Google Scholar 

  127. E. Beaudry, Y. Brosseau, C. Côté, C. Raïevsky, D. Létourneau, F. Kabanza, F. Michaud: Reactive planning in a motivated behavioral architecture, Proc. Am. Assoc. Artif. Intell. Conf. (2005) pp. 1242–1247

    Google Scholar 

  128. K. Haigh, M. Veloso: Planning, execution and learning in a robotic agent, Proc. 4th Int. Conf. Artif. Intell. Plan. Syst. (1998) pp. 120–127

    Google Scholar 

  129. S. Lemai, F. Ingrand: Interleaving temporeal planning and execution in robotics domains, Proc. Natl. Conf. Artif. Intell. (2004) pp. 617–622

    Google Scholar 

  130. D. Létourneau, F. Michaud, J.-M. Valin: Autonomous robot that can read, EURASIP J. Appl, Signal Process. 17, 1–14 (2004)

    MATH  Google Scholar 

  131. J.-M. Valin, F. Michaud, J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering, Robotics Auton. Syst. 55(3), 216–228 (2007)

    Google Scholar 

  132. J.-M. Valin, S. Yamaoto, J. Rouat, F. Michaud, K. Nakadai, H.G. Okuno: Robust recognition of simultaneous speech by a mobile robot, IEEE Trans. Robotics 23(4), 742–752 (2007)

    Google Scholar 

  133. F. Michaud, F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria: Toward autonomous, compliant, omnidirectional humanoid robots for natural interaction in real-life settings, Paladyn. J. Behav. Robotics 1, 57–65 (2010)

    Google Scholar 

  134. D.O. Hebb: The Organization of Behavior: A Neuropsychological Theory (Wiley, New York 1949)

    Google Scholar 

  135. G. Mandler: Mind and Body: Psychology of Emotion and Stress (Norton, New York 1984)

    Google Scholar 

  136. J.E. Stets: Emotions and sentiments. In: Handbook of Social Psychology, ed. by J.E. DeLamater (Wiley, New York 2003)

    Google Scholar 

  137. F. Ferland, F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria, F. Michaud: Natural interaction design of a humanoid robot, J. Hum.-Robot Interact. 1(2), 118–134 (2012)

    Google Scholar 

  138. F. Ferland, R. Chauvin, D. Létourneau, F. Michaud: Hello Robot, can you come here? Using ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition, Proc. ACM/IEEE Conf. Hum.-Robot Interact. (1983) p. 101

    Google Scholar 

  139. E. Beaudry, D. Létourneau, F. Kabanza, F. Michaud: Reactive planning as a motivational source in a behavior-based architecture, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2008) pp. 1848–1853

    Google Scholar 

  140. R.A. Brooks: Cambrian Intelligence – The Early History of the New AI (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  141. R. Pfeifer, C. Scheier: Understanding Intelligence (MIT Press, Cambridge 2001)

    Google Scholar 

  142. R.R. Murphy: An Introduction to AI Robotics (MIT Press, Cambridge 2000)

    Google Scholar 

  143. M.J. Matarić: The Robotics Primer (MIT Press, Cambridge 2007)

    Google Scholar 

  144. F. Martin: Robotic Explorations: A Hands-On Introduction to Engineering (Prentice Hall, Upper Saddle River 2001)

    Google Scholar 

  145. J.L. Jones, A.M. Flynn: Mobile Robots – Inspiration to Implementation (Peters, Wellesley 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Michaud .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Experience-based learning of high-level task representations: Demonstration available from http://handbookofrobotics.org/view-chapter/13/videodetails/27

:

Experience-based learning of high-level task representations: Reproduction available from http://handbookofrobotics.org/view-chapter/13/videodetails/28

:

Experience-based learning of high-level task representations: Demonstration (2) available from http://handbookofrobotics.org/view-chapter/13/videodetails/30

:

Experience-based learning of high-level task representations: Reproduction (2) available from http://handbookofrobotics.org/view-chapter/13/videodetails/31

:

Experience-based learning of high-level task representations: Demonstration (3) available from http://handbookofrobotics.org/view-chapter/13/videodetails/32

:

Experience-based learning of high-level task representations: Reproduction (3) available from http://handbookofrobotics.org/view-chapter/13/videodetails/33

:

The Nerd Herd available from http://handbookofrobotics.org/view-chapter/13/videodetails/34

:

Toto available from http://handbookofrobotics.org/view-chapter/13/videodetails/35

:

SpartacUS available from http://handbookofrobotics.org/view-chapter/13/videodetails/417

:

Natural interaction design of a humanoid robot available from http://handbookofrobotics.org/view-chapter/13/videodetails/418

:

Using ROS4iOS available from http://handbookofrobotics.org/view-chapter/13/videodetails/419

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michaud, F., Nicolescu, M. (2016). Behavior-Based Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics