Abstract
The recent notion of encryption switching protocol (ESP) allows two players to obliviously switch between two encryption schemes. Instantiated from multiplicatively homomorphic encryption and additively homomorphic encryption, ESPs provide a generic solution to two-party computation and lead to particularly efficient protocols for arithmetic circuits in terms of interaction and communication.
In this paper, we further investigate their applications and show how ESPs can be used as an alternative to fully-homomorphic encryption (FHE) to outsource computation on sensitive data to cloud providers. Our interactive solution relies on two non-colluding servers which obliviously perform the operations on encrypted data, and eventually send back the outcome in an encrypted form to the appropriate players.
Our solution makes use of a nice combination of the Paillier encryption scheme and the Damgard-Jurik variant with multiple trapdoors, which notably allows cross-user evaluations on encrypted data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)
Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)
Damgård, I., Jurik, M.: A length-flexible threshold cryptosystem with applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg (2003)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009
Couteau, G., Thomas Peters, D.P.: Encryption switching protocols. Cryptology ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org/
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987
Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)
Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012)
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990)
Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Acknowledgments
This work was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 339563 – CryptoCloud).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Couteau, G., Peters, T., Pointcheval, D. (2016). Secure Distributed Computation on Private Inputs. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds) Foundations and Practice of Security. FPS 2015. Lecture Notes in Computer Science(), vol 9482. Springer, Cham. https://doi.org/10.1007/978-3-319-30303-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-30303-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30302-4
Online ISBN: 978-3-319-30303-1
eBook Packages: Computer ScienceComputer Science (R0)