[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Preconditioned Quasi-Monte Carlo Algorithm for Matrix Computations

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9374))

Included in the following conference series:

Abstract

In this paper we present a quasi-Monte Carlo Sparse Approximate Inverse (SPAI) preconditioner. In contrast to the standard deterministic SPAI preconditioners that use the Frobenius norm, Monte Carlo and quasi-Monte Carlo preconditioners rely on stochastic and hybrid algorithms to compute a rough matrix inverse (MI). The behaviour of the proposed algorithm is studied. Its performance is measured and compared with the standard deterministic SPAI and MSPAI (parallel SPAI) approaches and with the Monte Carlo approach. An analysis of the results is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrov, V.N., Karaivanova, A.: Parallel monte carlo algorithms for sparse SLAE using MPI. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999. LNCS, vol. 1697, pp. 283–290. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Allèon, G., Benzi, M., Giraud, L.: Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics. Numer. Algorithm. 16(1), 1–15 (1997)

    Article  MATH  Google Scholar 

  3. Atanassov, E.I., Durchova, M.K.: Generating and testing the modified halton sequences. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 91–98. Springer, Heidelberg (2003)

    Google Scholar 

  4. Atanassov, E., Karaivanova, A., Ivanovska, S.: Tuning the generation of sobol sequence with Owen scrambling. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 459–466. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Benzi, M., Meyer, C., Tuma, M.: A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 5, 1135–1149 (1996)

    Article  MathSciNet  Google Scholar 

  6. Branford, S.: The parallel hybrid Monte Carlo algoritm. Master’s thesis, Schools of Systems Engineering, The Univerity of Reading (2003)

    Google Scholar 

  7. Branford, S.: Hybrid Monte Carlo methods for linear algebra problems. Ph.D. thesis, School of Systems Engineering, The University of Reading, April 2009

    Google Scholar 

  8. Branford, S., Weihrauch, C., Alexandrov, V.N.: A sparse parallel hybrid Monte Carlo algorithm for matrix computations. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 743–751. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Caflisch, R.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  10. Carpentieri, B., Duff, I., Giraud, L.: Some sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl. 7, 667–685 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carpentieri, B., Giraud, L., et al.: Experiments with sparse preconditioning of dense problems from electromagnetic applications. Technical report, CERFACS, Toulouse, France (2000)

    Google Scholar 

  12. Fathi, B., Liu, B., Alexandrov, V.N.: Mixed Monte Carlo parallel algorithms for matrix computation. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part II. LNCS, vol. 2330, pp. 609–618. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Grote, M., Hagemann, M.: Spai: sparse approximate inversepreconditioner. Spaidoc.pdf paper in the SPAI 3:1 (2006)

    Google Scholar 

  14. Huckle, T.: Factorized sparse approximate inverses for preconditioning. J. Supercomput. 25(2), 109–117 (2003)

    Article  MATH  Google Scholar 

  15. Huckle, T., Kallischko, A., Roy, A., Sedlacek, M., Weinzierl, T.: An efficient parallel implementation of the MSPAI preconditioner. Parallel Comput. 36(56), 273–284 (2010). Parallel Matrix Algorithms and Applications

    Article  MATH  MathSciNet  Google Scholar 

  16. Karaivanova, A.: Quasi-Monte Carlo methods for some linear algebra problems. Convergence and complexity. Serdica J. Comput. 4, 58–72 (2010). ISSN: 1312–6555

    MathSciNet  Google Scholar 

  17. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  18. Strassburg, J., Alexandrov, V.: Enhancing Monte Carlo preconditioning methods for matrix computations. Procedia Comput. Sci. 29, 1580–1589 (2014)

    Article  Google Scholar 

  19. http://www.cise.ufl.edu/research/sparse/matrices/

Download references

Acknowledgment

The research work reported in the paper is partly supported by the Bulgarian NSF grant Grant DFNI-I02/8, and second author would like to thank CONACYT-Mexico for supporting potsdoctoral position in BSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karaivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alexandrov, V., Esquivel-Flores, O., Ivanovska, S., Karaivanova, A. (2015). On the Preconditioned Quasi-Monte Carlo Algorithm for Matrix Computations. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science(), vol 9374. Springer, Cham. https://doi.org/10.1007/978-3-319-26520-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26520-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26519-3

  • Online ISBN: 978-3-319-26520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics