[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two Paths Location of a Tree with Positive or Negative Weights

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

  • 1485 Accesses

Abstract

This paper studies two problems of locating two paths in a tree with positive and negative weights. The first problem has objective to minimize the sum of minimum weighted distance from every vertex of the tree to the two paths, while the second is to minimize the sum of the weighted minimum distance from each vertex to the two paths. We develop an \(O(n^{2})\) algorithm based on the optimal properties for the first problem, and also an \(O(n^{3})\) algorithm for the second problem.

This research was partially supported by the National Nature Science Foundation of China (Nos. 11471210, 11171207).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armon, A., Gamzu, I., Segev, D.: Mobile facility location: combinatorial filtering via weighted occupancy. J. Comb. Optim. 28, 358–375 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Becker, R.I., Perl, Y.: Finding the two-core of a tree. Discrete Appl. Math. 11, 103–113 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, R.I., Lari, I., Scozzari, A., Storchi, G.: The location of median paths on grid graphs. Ann. Oper. Res. 150, 65–78 (2001)

    Article  MathSciNet  Google Scholar 

  4. Becker, R.I., Lari, I., Scozzari, A.: Algorithms for central-median paths with bounded length on trees. Eur. J. Oper. Res. 179, 1208–1220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berman, O., Krass, D., Menezes, M.: Facility reliability issues in network \(p\)-median problems: strategic centralization and co-location effects. Oper. Res. 55, 332–350 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burkard, R.E., Cela, E., Dollani, H.: \(2\)-medians in trees with pos/neg-weights. Discrete Appl. Math. 60, 51–71 (2000)

    Article  MathSciNet  Google Scholar 

  7. Burkard, R.E., Hatzl, J.: Median problems with positive and negative weights on cycles and cacti. J. Comb. Optim. 20, 27–46 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elloumi, S.: A tighter formulation of the \(p\)-median problem. J. Comb. Optim. 19, 69–83 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldman, A.J.: Optimal center location in simple networks. Trans. Sci. 5, 212–221 (1971)

    Article  Google Scholar 

  10. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, Part I: The \(p\)-centers. SIAM J. Appl. Math. 37, 513–518 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, Part II: The \(p\)-medians. SIAM J. Appl. Math. 37, 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lari, I., Ricca, F., Scozzari, A.: Comparing different metaheuristic approaches for the median path problem with bounded length. Eur. J. Oper. Res. 190, 587–597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Morgan, C.A., Slater, P.J.: A linear algorithm for the core of a tree. J. Algorithms 1, 247–258 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peurto, J., Ricca, F., Scozzari, A.: The continuous and discrete path-variance problems on trees. Networks 53, 221–228 (2009)

    Article  MathSciNet  Google Scholar 

  15. Peurto, J., Ricca, F., Scozzari, A.: Extensive facility location problems on networks with equity measures. Discrete Appl. Math. 157, 1069–1085 (2009)

    Article  MathSciNet  Google Scholar 

  16. Peurto, J., Ricca, F., Scozzari, A.: Reliability problems in multiple path-shaped facility location. Discrete Optim. 12, 61–72 (2014)

    Article  MathSciNet  Google Scholar 

  17. Richey, M.B.: Optimal location of a path or tree on a network with cycles. Networks 20, 391–407 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Slater, P.J.: Locating central paths in a graph. Transp. Sci. 16, 1–18 (1982)

    Article  MathSciNet  Google Scholar 

  19. Tamir, A.: An \(O(pn^{2})\) algorithm for the \(p\)-median and related problems on tree graphs. Oper. Res. Lett. 19, 59–64 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, F.: Finding a two-core of a tree in linear time. SIAM J. Discrete Math. 15, 193–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zaferanieh, M., Fathali, J.: Finding a core of a tree with pos/neg weight. Math. Meth. Oper. Res. 76, 147–160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfang Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Kang, L., Shan, E. (2014). Two Paths Location of a Tree with Positive or Negative Weights. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics