[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introduction to Linked Data and Its Lifecycle on the Web

  • Chapter
Reasoning Web. Reasoning on the Web in the Big Data Era (Reasoning Web 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8714))

Included in the following conference series:

Abstract

With Linked Data, a very pragmatic approach towards achieving the vision of the Semantic Web has gained some traction in the last years. The term Linked Data refers to a set of best practices for publishing and interlinking structured data on the Web. While many standards, methods and technologies developed within by the Semantic Web community are applicable for Linked Data, there are also a number of specific characteristics of Linked Data, which have to be considered. In this article we introduce the main concepts of Linked Data. We present an overview of the Linked Data life-cycle and discuss individual approaches as well as the state-of-the-art with regard to extraction, authoring, linking, enrichment as well as quality of Linked Data. We conclude the chapter with a discussion of issues, limitations and further research and development challenges of Linked Data. This article is an updated version of a similar lecture given at Reasoning Web Summer School 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Resource description framework (RDF): Concepts and abstract syntax. Technical report, W3C, 2 (2004)

    Google Scholar 

  2. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowdsourcing linked data quality assessment. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax and processing – a collection of attributes and processing rules for extending XHTML to support RDF. W3C Recommendation (October 2008), http://www.w3.org/TR/rdfa-syntax/

  4. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: ACM DL, pp. 85–94 (2000)

    Google Scholar 

  5. Agresti, A.: An Introduction to Categorical Data Analysis, 2nd edn. Wiley-Interscience (1997)

    Google Scholar 

  6. Amsler, R.: Research towards the development of a lexical knowledge base for natural language processing. SIGIR Forum 23, 1–2 (1989)

    Article  Google Scholar 

  7. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

    Google Scholar 

  8. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-weight linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM (2009)

    Google Scholar 

  9. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic Collaboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 55–69. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Auer, S., Lehmann, J.: Making the web a data washing machine - creating knowledge out of interlinked data. Semantic Web Journal (2010)

    Google Scholar 

  12. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: Adding a spatial dimension to the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to linked data and its lifecycle on the web. In: Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Weg 2013. LNCS, vol. 8067, pp. 1–90. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Auer, S., Weidl, M., Lehmann, J., Zaveri, A.J., Choi, K.-S.: I18n of semantic web applications. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 1–16. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In: Demo Session at the Second European Semantic Web Conference (ESWC 2005) (May 2005), http://wiksar.sf.net

  16. Baader, F., Diageo, C., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, Cambridge (2003)

    Google Scholar 

  17. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)

    Google Scholar 

  18. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record linkage. In: KDD 2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation (2003)

    Google Scholar 

  21. Ben-David, D., Domany, T., Tarem, A.: Enterprise data classification using semantic web technologies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 66–81. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI): Generic syntax. Internet RFC 2396 (August 1998)

    Google Scholar 

  23. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: Effectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record linkage. In: ICDM 2006, pp. 87–96. IEEE (2006)

    Google Scholar 

  25. Bizer, C.: Quality-Driven Information Filtering in the Context of Web-Based Information Systems. PhD thesis, Freie Universität Berlin (March 2007)

    Google Scholar 

  26. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the wiqa policy framework. Web Semantics 7(1), 1–10 (2009)

    Article  Google Scholar 

  27. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)

    Article  Google Scholar 

  28. Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys (CSUR) 41(1), 1 (2008)

    Article  Google Scholar 

  29. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Readings in Machine Learning, pp. 201–204. Morgan Kaufmann (1990)

    Google Scholar 

  30. Böhm, C., Naumann, F., Abedjan, Z., Fenz, D., Grütze, T., Hefenbrock, D., Pohl, M., Sonnabend, D.: Profiling linked open data with ProLOD. In: ICDE Workshops, pp. 175–178. IEEE (2010)

    Google Scholar 

  31. Bonatti, P.A., Hogan, A., Polleres, A., Sauro, L.: Robust and scalable linked data reasoning incorporating provenance and trust annotations. Journal of Web Semantics 9(2), 165–201 (2011)

    Article  Google Scholar 

  32. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  33. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  34. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C recommendation, W3C (February 2004), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

  35. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  36. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Carroll, J.J.: Signing RDF graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  38. Chang, C.-C., Lin, C.-J.: Libsvm - a library for support vector machines, The Weka classifier works with version 2.82 of LIBSVM (2001)

    Google Scholar 

  39. Chen, P., Garcia, W.: Hypothesis generation and data quality assessment through association mining. In: IEEE ICCI, pp. 659–666. IEEE (2010)

    Google Scholar 

  40. Cherix, D., Hellmann, S., Lehmann, J.: Improving the performance of the DL-learner SPARQL component for semantic web applications. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 332–337. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  41. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)

    Article  Google Scholar 

  42. Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of free text. Computers and the Humanities 26, 441–456 (1992), doi:10.1007/BF00136985

    Article  Google Scholar 

  43. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)

    Google Scholar 

  44. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: KR 1994, pp. 121–133. Morgan Kaufmann (1994)

    Google Scholar 

  45. Cornolti, M., Ferragina, P., Ciaramita, M.: A framework for benchmarking entity-annotation systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 249–260. International World Wide Web Conferences Steering Committee (2013)

    Google Scholar 

  46. Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data. In: EMNLP-CoNLL, pp. 708–716 (2007)

    Google Scholar 

  47. Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, Morristown, NJ, USA, vol. 4, pp. 164–167. Association for Computational Linguistics (2003)

    Google Scholar 

  48. d’Amato, C., Fanizzi, N., Esposito, F.: A note on the evaluation of inductive concept classification procedures. In: Gangemi, A., Keizer, J., Presutti, V., Stoermer, H. (eds.) SWAP 2008. CEUR Workshop Proceedings, vol. 426. CEUR-WS.org (2008)

    Google Scholar 

  49. Ding, L., Finin, T.W.: Characterizing the semantic web on the web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  50. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)

    Article  Google Scholar 

  51. Ermilov, T., Heino, N., Tramp, S., Auer, S.: OntoWiki Mobile – Knowledge Management in Your Pocket. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 185–199. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  52. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  53. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005)

    Article  Google Scholar 

  54. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  55. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  56. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hypertext transfer protocol – http/1.1 (rfc 2616). Request For Comments (1999), http://www.ietf.org/rfc/rfc2616.txt (accessed July 7, 2006)

  57. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for Computational Linguistics, Morristown (2005)

    Google Scholar 

  58. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  59. Flemming, A.: Quality characteristics of linked data publishing datasources. Master’s thesis, Humboldt-Universität zu Berlin (2010)

    Google Scholar 

  60. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann Publishers Inc, San Francisco (1999)

    Google Scholar 

  61. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  62. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Technical report, Stanford University (1998)

    Google Scholar 

  64. Fürber, C., Hepp, M.: SWIQA - a semantic web information quality assessment framework. In: ECIS (2011)

    Google Scholar 

  65. Gama, J.: Functional trees 55(3), 219–250 (2004)

    Google Scholar 

  66. Gamble, M., Goble, C.: Quality, trust, and utility of scientific data on the web: Towards a joint model. In: ACM WebSci, pp. 1–8 (June 2011)

    Google Scholar 

  67. Gil, Y., Artz, D.: Towards content trust of web resources. Web Semantics 5(4), 227–239 (2007)

    Article  Google Scholar 

  68. Gil, Y., Ratnakar, V.: Trusting information sources one citizen at a time. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 162. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  69. Glaser, H., Millard, I.C., Sung, W.-K., Lee, S., Kim, P., You, B.-J.: Research on linked data and co-reference resolution. Technical report, University of Southampton (2009)

    Google Scholar 

  70. Golbeck, J.: Using trust and provenance for content filtering on the semantic web. In: Workshop on Models of Trust on the Web at the 15th World Wide Web Conference (2006)

    Google Scholar 

  71. Golbeck, J., Parsia, B., Hendler, J.: Trust networks on the semantic web. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 238–249. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  72. Grishman, R., Yangarber, R.: Nyu: Description of the Proteus/Pet system as used for MUC-7 ST. In: MUC-7. Morgan Kaufmann (1998)

    Google Scholar 

  73. Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using network measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  74. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  75. Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In: IJCAI, pp. 1061–1066 (2005)

    Google Scholar 

  76. Hartig, O.: Trustworthiness of data on the web. In: STI Berlin and CSW PhD Workshop, Berlin, Germany (2008)

    Google Scholar 

  77. Hartig, O., Zhao, J.: Using web data provenance for quality assessment. In: Freire, J., Missier, P., Sahoo, S.S. (eds.) SWPM. CEUR Workshop Proceedings, vol. 526, CEUR-WS.org (2009)

    Google Scholar 

  78. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, MIT Press (1998)

    Google Scholar 

  79. Heath, T., Bizer, C.: Linked Data - Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web:Theory and Technology, vol. 1. Morgan & Claypool (2011)

    Google Scholar 

  80. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applications with the ontoWiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221, pp. 61–77. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  81. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)

    Article  Google Scholar 

  82. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class expressions on very large knowledge bases and its applications. In: Interoperability Semantic Services and Web Applications: Emerging Concepts, ch. 5, pp. 104–130. IGI Global (2011)

    Google Scholar 

  83. Hellmann, S., Lehmann, J., Unbehauen, J., Stadler, C., Lam, T.N., Strohmaier, M.: Navigation-induced knowledge engineering by example. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 207–222. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  84. Hillner, S., Ngomo, A.-C.N.: Parallelizing limes for large-scale link discovery. In: I’Semantics (2011)

    Google Scholar 

  85. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: LDOW (2010)

    Google Scholar 

  86. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An empirical survey of linked data conformance. Journal of Web Semantics (2012)

    Google Scholar 

  87. Horridge, M., Patel-Schneider, P.F.: Manchester syntax for OWL 1.1. In: OWLED 2008 (2008)

    Google Scholar 

  88. HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft (August 2009), http://www.w3.org/TR/2009/WD-html5-20090825/

  89. Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept learning in the semantic web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 370–379. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  90. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  91. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private record linkage. In: ICDE, pp. 496–505 (2008)

    Google Scholar 

  92. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery without losing recall. In: WebDB (2011)

    Google Scholar 

  93. Isele, R., Jentzsch, A., Bizer, C.: Active learning of expressive linkage rules for the web of data. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 411–418. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  94. Jacobi, I., Kagal, L., Khandelwal, A.: Rule-based trust assessment on the semantic web. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 227–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  95. Jacobs, I., Walsh, N.: Architecture of the world wide web, vol. one. World Wide Web Consortium, Recommendation REC-Webarch-20041215 (December 2004)

    Google Scholar 

  96. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345. Morgan Kaufmann (1995)

    Google Scholar 

  97. Juran, J.: The Quality Control Handbook. McGraw-Hill, New York (1974)

    Google Scholar 

  98. Kim, S.N., Kan, M.-Y.: Re-examining automatic keyphrase extraction approaches in scientific articles. In: Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, MWE 2009, pp. 9–16. Association for Computational Linguistics, Stroudsburg (2009)

    Chapter  Google Scholar 

  99. Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 21–26. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  100. Kittler, J., Hatef, M., Duin, R.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  101. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  102. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)

    Article  Google Scholar 

  103. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia. Journal of Web Semantics 5, 251–261 (2007)

    Article  Google Scholar 

  104. Gayo, J.E.L., Kontokostas, D., Auer, S.: Multilingual linked open data patterns. Semantic Web Journal (2012)

    Google Scholar 

  105. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Machine Learning 95(1-2), 161–205 (2005)

    Article  MATH  Google Scholar 

  106. le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statistics 41(1), 191–201 (1992)

    Article  MATH  Google Scholar 

  107. Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  108. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  109. Lehmann, J.: Learning OWL Class Expressions. PhD thesis, University of Leipzig, PhD in Computer Science (2010)

    Google Scholar 

  110. Lehmann, J.: Ontology learning. In: Proceedings of Reasoning Web Summer School (2010)

    Google Scholar 

  111. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)

    Article  Google Scholar 

  112. Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)

    Article  Google Scholar 

  113. Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  114. Lehmann, J., et al.: deqa: Deep web extraction for question answering. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 131–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  115. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  116. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\mathcal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  117. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)

    Article  MathSciNet  Google Scholar 

  118. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal (2014)

    Google Scholar 

  119. Lei, Y., Uren, V., Motta, E.: A framework for evaluating semantic metadata. In: 4th International Conference on Knowledge Capture, K-CAP 2007, vol. (8), pp. 135–142. ACM (2007)

    Google Scholar 

  120. Pipino, D.K.L., Wang, R., Rybold, W.: Developing Measurement Scales for Data-Quality Dimensions, vol. 1. M.E. Sharpe, New York (2005)

    Google Scholar 

  121. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet. Addison-Wesley Professional (2001)

    Google Scholar 

  122. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  123. Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)

    Google Scholar 

  124. Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying requirements engineering – the softwiki approach. In: Proceedings of the 4th International Conference on Semantic Technologies (I-SEMANTICS 2008), pp. 182–185. J.UCS (2008)

    Google Scholar 

  125. Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on the semantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New York (2009)

    Google Scholar 

  126. Ma, L., Sun, X., Cao, F., Wang, C., Wang, X., Kanellos, N., Wolfson, D., Pan, Y.: Semantic enhancement for enterprise data management. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 876–892. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  127. Martin, M., Stadler, C., Frischmuth, P., Lehmann, J.: Increasing the financial transparency of european commission project funding. Semantic Web Journal, Special Call for Linked Dataset Descriptions (2), 157–164 (2013)

    Google Scholar 

  128. Matsuo, Y., Ishizuka, M.: Keyword Extraction From A Single Document Using Word Co-Occurrence Statistical Information. International Journal on Artificial Intelligence Tools 13(1), 157–169 (2004)

    Article  Google Scholar 

  129. Maynard, D., Peters, W., Li, Y.: Metrics for evaluation of ontology-based information extraction. In: Workshop on Evaluation of Ontologies for the Web (EON) at WWW (May 2006)

    Google Scholar 

  130. McBride, B., Beckett, D.: Rdf/xml syntax specification. W3C Recommendation (February 2004)

    Google Scholar 

  131. McCusker, J., McGuinness, D.: Towards identity in linked data. In: Proceedings of OWL Experiences and Directions Seventh Annual Workshop (2010)

    Google Scholar 

  132. Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.: Managing data quality in cooperative information systems. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2002. LNCS, vol. 2519, pp. 486–502. Springer, Heidelberg (2002)

    Google Scholar 

  133. Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontology mappings. In: 3rd International Workshop on Ontology Matching (OM) at the ISWC (2008)

    Google Scholar 

  134. Mendes, P., Mühleisen, H., Bizer, C.: Sieve: Linked data quality assessment and fusion. In: LWDM (March 2012)

    Google Scholar 

  135. Mendes, P., Bizer, C., Miklos, Z., Calbimonte, J.-P., Moraru, A., Flouris, G.: D2.1: Conceptual model and best practices for high-quality metadata publishing. Technical report, PlanetData Deliverable (2012)

    Google Scholar 

  136. Moats, R.: Urn syntax. Internet RFC 2141 (May 1997)

    Google Scholar 

  137. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  138. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.-C.N.: Usage-Centric Benchmarking of RDF Triple Stores. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, AAAI 2012 (2012)

    Google Scholar 

  139. Mostafavi, M.A., Edwards, G., Jeansoulin, R.: Ontology-based method for quality assessment of spatial data bases. In: International Symposium on Spatial Data Quality, vol. 4, pp. 49–66 (2004)

    Google Scholar 

  140. Nadeau, D.: Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. PhD thesis, University of Ottawa (2007)

    Google Scholar 

  141. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae Investigationes 30(1), 3–26 (2007)

    Article  Google Scholar 

  142. Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity. In: Lamontagne, L., Marchand, M. (eds.) Canadian AI 2006. LNCS (LNAI), vol. 4013, pp. 266–277. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  143. Naumann, F.: Quality-Driven Query Answering for Integrated Information Systems. LNCS, vol. 2261. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  144. Ngomo, A.-C.N.: Parameter-free clustering of protein-protein interaction graphs. In: Proceedings of Symposium on Machine Learning in Systems Biology (2010)

    Google Scholar 

  145. Ngomo, A.-C.N.: A time-efficient hybrid approach to link discovery. In: Proceedings of OM@ISWC (2011)

    Google Scholar 

  146. Ngonga Ngomo, A.-C.: Link discovery with guaranteed reduction ratio in affine spaces with minkowski measures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 378–393. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  147. Ngomo, A.-C.N.: On link discovery using a hybrid approach. Journal on Data Semantics 1, 203–217 (2012)

    Article  Google Scholar 

  148. Ngomo, A.-C.N., Auer, S.: Limes - a time-efficient approach for large-scale link discovery on the web of data. In: Proceedings of IJCAI (2011)

    Google Scholar 

  149. Ngomo, A.-C.N., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, i don’t speak sparql — translating sparql queries into natural language. In: Proceedings of WWW (2013)

    Google Scholar 

  150. Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., Kaltenböck, M.: Scms - semantifying content management systems. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 189–204. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  151. Ngomo, A.-C.N., Kolb, L., Heino, N., Hartung, M., Auer, S., Rahm, E.: When to reach for the cloud: Using parallel hardware for link discovery. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 275–289. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  152. Ngomo, A.-C.N., Lehmann, J., Auer, S., Höffner, K.: Raven: Active learning of link specifications. In: Proceedings of the Ontology Matching Workshop (co-located with ISWC) (2011)

    Google Scholar 

  153. Ngonga Ngomo, A.-C., Lyko, K.: Eagle: Efficient active learning of link specifications using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  154. Ngomo, A.-C.N., Lyko, K., Christen, V.: Coala – correlation-aware active learning of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  155. Ngonga Ngomo, A.-C., Schumacher, F.: Border flow – a local graph clustering algorithm for natural language processing. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 547–558. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  156. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree mining. In: AAAI, pp. 1414–1420 (2007)

    Google Scholar 

  157. Nguyen, T., Kan, M.-Y.: Keyphrase Extraction in Scientific Publications, pp. 317–326 (2007)

    Google Scholar 

  158. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  159. Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, J., Park, D., Quan, L. (eds.) roc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland, vol. 175 (November 6, 2005)

    Google Scholar 

  160. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In: ACL, pp. 113–120. ACL Press (2006)

    Google Scholar 

  161. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond terminology identification. In: Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  162. Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press (2006)

    Google Scholar 

  163. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language - Semantics and Abstract Syntax. W3c:rec, W3C (February 10, 2004), http://www.w3.org/TR/owl-semantics/

  164. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications of the ACM 45(4) (2002)

    Google Scholar 

  165. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  166. Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  167. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)

    Article  MATH  Google Scholar 

  168. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: 1st Workshop about Linked Data on the Web (2008)

    Google Scholar 

  169. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, pp. 1375–1384. Association for Computational Linguistics (2011)

    Google Scholar 

  170. Röder, M., Usbeck, R., Hellmann, S., Gerber, D., Both, A.: N3 - a collection of datasets for named entity recognition and disambiguation in the nlp interchange format. In: Language Resources and EvaluationConference, 9th edn., Reykjavik, Iceland, May 26-31 (2014)

    Google Scholar 

  171. Riechert, T., Lauenroth, K., Lehmann, J., Auer, S.: Towards semantic based requirements engineering. In: Proceedings of the 7th International Conference on Knowledge Management, I-KNOW (2007)

    Google Scholar 

  172. Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engineering for historians on the example of the catalogus professorum lipsiensis. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 225–240. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  173. Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat – Pattern-Based Evolution and Refactoring of RDF Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 647–662. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  174. Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  175. Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the Diversity and Availability of Temporal Information in Linked Open Data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  176. Rula, A., Palmonari, M., Maurino, A.: Capturing the Age of Linked Open Data: Towards a Dataset-independent Framework. In: IEEE International Conference on Semantic Computing (2012)

    Google Scholar 

  177. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf (January 2009)

    Google Scholar 

  178. Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and Linguistic Computing 4(1) (1989)

    Google Scholar 

  179. Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3C Interest Group Note (December 2008)

    Google Scholar 

  180. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: Proceedings of the 1st International Workshop on Semantic Technologies in Collaborative Applications, STICA (2006)

    Google Scholar 

  181. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and interlink. In: Proc. IJCAI, IR-KR Workshop (2009)

    Google Scholar 

  182. Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org. (2009)

    Google Scholar 

  183. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012)

    Google Scholar 

  184. Shekarpour, S., Katebi, S.D.: Modeling and evaluation of trust with an extension in semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 8(1), 26–36 (2010)

    Article  Google Scholar 

  185. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical report (August 01, 2008)

    Google Scholar 

  186. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91 (2005)

    Article  Google Scholar 

  187. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: A survey. Semantic Web 3(2), 169–209 (2012)

    Google Scholar 

  188. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial open data. Semantic Web Journal 3(4), 333–354 (2012)

    Google Scholar 

  189. Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL-95 SIGDAT Workshop (1995)

    Google Scholar 

  190. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a Social Data Web with Semantic Pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 135–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  191. Tramp, S., Heino, N., Auer, S., Frischmuth, P.: RDFauthor: Employing RDFa for collaborative Knowledge Engineering. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 90–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  192. Peter, D.: Turney. Coherent keyphrase extraction via web mining. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  193. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano, P.: Template-based question answering over rdf data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 639–648 (2012)

    Google Scholar 

  194. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: Owl reasoning with webpie: calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  195. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  196. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE (2008)

    Google Scholar 

  197. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  198. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  199. Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis. In: Analysing Language in Restricted Domains (1986)

    Google Scholar 

  200. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM 39(11), 86–95 (1996)

    Article  Google Scholar 

  201. Wang, G., Yu, Y., Zhu, H.: Pore: Positive-only relation extraction from wikipedia text. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 580–594. Springer, Heidelberg (2007)

    Google Scholar 

  202. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems 12(4), 5–33 (1996)

    Article  Google Scholar 

  203. Watanabe, H., Muggleton, S.: Can ILP be applied to large dataset? In: De Raedt, L. (ed.) ILP 2009. LNCS (LNAI), vol. 5989, pp. 249–256. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  204. Winkler, W.: The state of record linkage and current research problems. Technical report, Statistical Research Division, U.S. Bureau of the Census (1999)

    Google Scholar 

  205. Winkler, W.: Overview of record linkage and current research directions. Technical report, Bureau of the Census - Research Report Series (2006)

    Google Scholar 

  206. Wu, D., Ngai, G., Carpuat, M.: A stacked, voted, stacked model for named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, pp. 200–203. Association for Computational Linguistics, Stroudsburg (2003)

    Chapter  Google Scholar 

  207. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)

    Chapter  Google Scholar 

  208. Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation extraction by mining wikipedia texts using information from the web. In: ACL 2009, pp. 1021–1029 (2009)

    Google Scholar 

  209. Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in RDF Graphs. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 794–809. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  210. Zaveri, A., Kontokostas, D., Sherif, M.A., Bühmann, L., Morsey, M., Auer, S., Lehmann, J.: User-driven quality evaluation of dbpedia. To appear in Proceedings of 9th International Conference on Semantic Systems, I-SEMANTICS 2013, Graz, Austria, September 4-6, pp. 97–104. ACM (2013)

    Google Scholar 

  211. Zaveri, A., Lehmann, J., Auer, S., Hassan, M.M., Sherif, M.A., Martin, M.: Publishing and interlinking the global health observatory dataset. Semantic Web Journal, Special Call for Linked Dataset Descriptions (3), 315–322 (2013)

    Google Scholar 

  212. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment methodologies for linked open data. Under review, http://www.semantic-web-journal.net/content/quality-assessment-methodologies-linked-open-data

  213. Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 473–480. Association for Computational Linguistics, Morristown (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ngomo, AC.N., Auer, S., Lehmann, J., Zaveri, A. (2014). Introduction to Linked Data and Its Lifecycle on the Web. In: Koubarakis, M., et al. Reasoning Web. Reasoning on the Web in the Big Data Era. Reasoning Web 2014. Lecture Notes in Computer Science, vol 8714. Springer, Cham. https://doi.org/10.1007/978-3-319-10587-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10587-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10586-4

  • Online ISBN: 978-3-319-10587-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics