Abstract
One approach to automated constraint modelling is to generate, and then select from, a set of candidate models. This method is used by the automated modelling system Conjure. To select a preferred model or set of models for a problem class from the candidates Conjure produces, we use a set of training instances drawn from the target class. It is important that the training instances are discriminating. If all models solve a given instance in a trivial amount of time, or if no models solve it in the time available, then the instance is not useful for model selection. This paper addresses the task of generating small sets of discriminating training instances automatically. The instance space is determined by the parameters of the associated problem class. We develop a number of methods of finding parameter configurations that give discriminating training instances, some of them leveraging existing parameter-tuning techniques. Our experimental results confirm the success of our approach in reducing a large set of input models to a small set that we can expect to perform well for the given problem class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in conjure. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer, Heidelberg (2013)
Akgun, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated constraint modelling. In: 25th Conference on Artificial Intelligence (AAAI) (2011)
Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)
Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004)
Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a SAT-based version space algorithm. In: 21st Conference on Artificial Intelligence (AAAI), pp. 1565–1568 (2006)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: The Genetic and Evolutionary Computation Conference (GECCO), vol. 2, pp. 11–18 (2002)
Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: 17th European Conference on Artificial Intelligence (ECAI), pp. 73–77 (2006)
Coletta, R., Bessière, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003)
Flener, P., Pearson, J., Ågren, M.: Introducing esra, a relational language for modelling combinatorial problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 971–971. Springer, Heidelberg (2003)
Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint modelling. In: 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 109–116 (2005)
Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)
Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: 17th European Conference on Artificial Intelligence (ECAI), vol. 141, pp. 98–102 (2006)
Gent, I.P., Miguel, I., Rendl, A.: Common subexpression elimination in automated constraint modelling. In: Workshop on Modeling and Solving Problems with Constraints, pp. 24–30 (2008)
Hnich, B.: Function variables for constraint programming. AI Communications 16(2), 131–132 (2003)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Koninck, L.D., Brand, S., Stuckey, P.J.: Data independent type reduction for Zinc. In: 9th International Workshop on Constraint Modelling and Reformulation (2010)
Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 45–52 (2010)
Little, J.J., Gebruers, C., Bridge, D.G., Freuder, E.C.: Using case-based reasoning to write constraint programs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 983. Springer, Heidelberg (2003)
Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)
Mills, P., Tsang, E., Williams, R., Ford, J., Borrett, J.: EaCL 1.5: An easy abstract constraint optimisation programming language. Tech. rep., University of Essex, Colchester, UK (December 1999)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Minizinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)
Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving constraint models in savile row through associative-commutative common subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 590–605. Springer, Heidelberg (2014)
Rendl, A.: Effective Compilation of Constraint Models. Ph.D. thesis, University of St Andrews (2010)
Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Gent, I.P. et al. (2014). Discriminating Instance Generation for Automated Constraint Model Selection. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-10428-7_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10427-0
Online ISBN: 978-3-319-10428-7
eBook Packages: Computer ScienceComputer Science (R0)