[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discriminating Instance Generation for Automated Constraint Model Selection

  • Conference paper
Principles and Practice of Constraint Programming (CP 2014)

Abstract

One approach to automated constraint modelling is to generate, and then select from, a set of candidate models. This method is used by the automated modelling system Conjure. To select a preferred model or set of models for a problem class from the candidates Conjure produces, we use a set of training instances drawn from the target class. It is important that the training instances are discriminating. If all models solve a given instance in a trivial amount of time, or if no models solve it in the time available, then the instance is not useful for model selection. This paper addresses the task of generating small sets of discriminating training instances automatically. The instance space is determined by the parameters of the associated problem class. We develop a number of methods of finding parameter configurations that give discriminating training instances, some of them leveraging existing parameter-tuning techniques. Our experimental results confirm the success of our approach in reducing a large set of input models to a small set that we can expect to perform well for the given problem class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in conjure. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Akgun, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated constraint modelling. In: 25th Conference on Artificial Intelligence (AAAI) (2011)

    Google Scholar 

  3. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a SAT-based version space algorithm. In: 21st Conference on Artificial Intelligence (AAAI), pp. 1565–1568 (2006)

    Google Scholar 

  6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: The Genetic and Evolutionary Computation Conference (GECCO), vol. 2, pp. 11–18 (2002)

    Google Scholar 

  7. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: 17th European Conference on Artificial Intelligence (ECAI), pp. 73–77 (2006)

    Google Scholar 

  8. Coletta, R., Bessière, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Flener, P., Pearson, J., Ågren, M.: Introducing esra, a relational language for modelling combinatorial problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 971–971. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint modelling. In: 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 109–116 (2005)

    Google Scholar 

  11. Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: 17th European Conference on Artificial Intelligence (ECAI), vol. 141, pp. 98–102 (2006)

    Google Scholar 

  13. Gent, I.P., Miguel, I., Rendl, A.: Common subexpression elimination in automated constraint modelling. In: Workshop on Modeling and Solving Problems with Constraints, pp. 24–30 (2008)

    Google Scholar 

  14. Hnich, B.: Function variables for constraint programming. AI Communications 16(2), 131–132 (2003)

    MATH  Google Scholar 

  15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Koninck, L.D., Brand, S., Stuckey, P.J.: Data independent type reduction for Zinc. In: 9th International Workshop on Constraint Modelling and Reformulation (2010)

    Google Scholar 

  17. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 45–52 (2010)

    Google Scholar 

  18. Little, J.J., Gebruers, C., Bridge, D.G., Freuder, E.C.: Using case-based reasoning to write constraint programs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 983. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mills, P., Tsang, E., Williams, R., Ford, J., Borrett, J.: EaCL 1.5: An easy abstract constraint optimisation programming language. Tech. rep., University of Essex, Colchester, UK (December 1999)

    Google Scholar 

  21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Minizinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving constraint models in savile row through associative-commutative common subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 590–605. Springer, Heidelberg (2014)

    Google Scholar 

  23. Rendl, A.: Effective Compilation of Constraint Models. Ph.D. thesis, University of St Andrews (2010)

    Google Scholar 

  24. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gent, I.P. et al. (2014). Discriminating Instance Generation for Automated Constraint Model Selection. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics