[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining Surgery Phase-Related Sequential Rules from Vertebroplasty Simulations Traces

  • Conference paper
Artificial Intelligence in Medicine (AIME 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9105))

Included in the following conference series:

Abstract

We present in this paper an algorithm for extracting perceptual-gestural rules from heterogeneous multisource traces. The challenge that we address is two-fold: 1) represent traces such that they render coherently all aspect of this multimodal knowledge; 2) ensure that key tutoring services can be produced on top of represented traces. In the spirit of automatic knowledge acquisition paradigm proposed in the literature, we implemented PhARules, a modified version of an existing algorithm, CMRules, for mining surgery phase-aware sequential rules from simulated surgery traces. We demonstrated the efficiency of our algorithm as well its performance limits on traces of simulations of vertebroplasty recorded in TELEOS, an Intelligent Tutoring System dedicated to percutaneous orthopedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielminski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: SIGMOD Conference, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. Int. Conf. on Data Engineering, pp. 3–14 (1995)

    Google Scholar 

  3. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E.: Building Intelligent Tutoring Systems for Ill-Defined Domains. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 81–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U.: A Hybrid Expertise Model to Support Tutoring Services in Robotic Arm Manipulations. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS(LNAI), vol. 7094, pp. 478–489. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E.: CMRules: Mining sequential rules common to several sequences. Journal Know.-Based Syst. 25(1), 63–76 (2012)

    Article  Google Scholar 

  6. Jambon, F., Luengo, V.: Analyse oculométrique « on-line » avec zones d’intérêt dynamiques: application aux environnements d’apprentissage sur simulateur. In: Actes de la Conférence Ergo’IHM sur les Nouvelles Interactions, Créativité et Usages, Biarritz France (2012)

    Google Scholar 

  7. Luengo, V., Larcher, A., Tonetti, J.: Design and implementation of a visual and haptic simulator in a platform for a TEL system in percutaneous orthopedic surgery. In: Westwood, J.D., Vestwood, S.W. (eds.) Medecine Meets Virtual Reality 18, pp. 324–328 (2011)

    Google Scholar 

  8. Luengo, V., Vadcard, L., Tonetti, J., Dubois, M.: Diagnostic des connaissances et rétroaction épistémique adaptative en chirurgie. In: Revue d’Intelligence Artificielle, vol. 25(4), pp. 499–524. Lavoisier. Hermes Science Publications (2011)

    Google Scholar 

  9. Minh Chieu, V., Luengo, V., Vadcard, L.: Student Modeling in Orthopedic Surgery Training: Exploiting Symbiosis between Temporal Bayesian Networks and Fine-grained Didactical Analysis. In: International Journal of Artificial Intelligence in Education 20, pp. 269–301. IOS Press (2010)

    Google Scholar 

  10. Lynch, C., Ashley, K., Aleven, V., Pinkwart, N.: Defining Ill-Defined Domains; A literature survey. In: Proc. Intelligent Tutoring Systems for Ill-Defined Domains Workshop, ITS 2006, pp. 1–10 (2006)

    Google Scholar 

  11. Rabatel, J., Bringay, S., Poncelet, P.: Mining Sequential Patterns: A Context-Aware Approach. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D.A. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 471, pp. 23–41. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Stendardo, N., Kalousis, A.: Relationship-aware sequential pattern mining. CoRR 1212, 5389 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Manson Toussaint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Toussaint, BM., Luengo, V. (2015). Mining Surgery Phase-Related Sequential Rules from Vertebroplasty Simulations Traces. In: Holmes, J., Bellazzi, R., Sacchi, L., Peek, N. (eds) Artificial Intelligence in Medicine. AIME 2015. Lecture Notes in Computer Science(), vol 9105. Springer, Cham. https://doi.org/10.1007/978-3-319-19551-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19551-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19550-6

  • Online ISBN: 978-3-319-19551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics