[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Molecular Dynamics Simulations of Ligand Recognition upon Binding Antithrombin: A MM/GBSA Approach

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

Abstract

A high-throughput virtual screening pipeline has been extended from single energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA rescoring. For validation, the binding affinities of a series of antithrombin ligands have been calculated by using the two MM/GBSA rescoring methods. The correlation coefficient (R2) of calculated and experimental binding free energies has been improved from 0.36 (for single-structure MM/GBSA rescoring) to 0.69 (for ensemble-average one). Decomposition of the calculated binding free energy reveals the electrostatic interactions in both solute and solvent play an important role in determining the binding free energy. The increasing negative charge of the compounds provides a more favorable electrostatic energy change but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the electrostatic energy change, which results in a better binding affinity. The best binder has the highest ligand efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, X., Wong, S.E., Lightstone, F.C.: Toward Fully Automated High Performance Computing Drug Discovery: A Massively Parallel Virtual Screening Pipeline for Docking and Molecular Mechanics/Generalized Born Surface Area Rescoring to Improve Enrichment. J. Chem. Inf. Model. 54, 324–337 (2014)

    Article  Google Scholar 

  2. Zhang, X., Wong, S.E., Lightstone, F.C.: Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines. J. Comput. Chem. 34, 915–927 (2013)

    Article  Google Scholar 

  3. Beveridge, D.L., DiCapua, F.M.: Free Energy Via Molecular Simulation: Applications to Chemical and Biomolecular Systems. Annu. Rev. Biophys. Biophys. Chem. 18, 431–492 (1989)

    Article  Google Scholar 

  4. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E.: Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 33, 889–897 (2000)

    Article  Google Scholar 

  5. Hou, T.J., Wang, J.M., Li, Y.Y., Wang, W.: Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 51, 69–82 (2011)

    Article  Google Scholar 

  6. Pérez-Sánchez, H., Cano, G., García-Rodríguez, J.: Improving drug discovery using hybrid softcomputing methods. Applied Soft Computing 20, 119–126 (2014)

    Article  Google Scholar 

  7. Sanchez-Linares, I., Perez-Sanchez, H., Cecilia, J., Garcia, J.: High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics 13, S13 (2012)

    Google Scholar 

  8. Rastelli, G., Rio, A.D., Degliesposti, G., Sgobba, M.: Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 31, 797–810 (2010)

    Google Scholar 

  9. Greenidge, P.A., Kramer, C., Mozziconacci, J.C., Wolf, R.M.: MM/GBSA Binding Energy Prediction on the PDBbind Data Set: Successes, Failures, and Directions for Further Improvement. J. Chem. Inf. Model. 53, 201–209 (2013)

    Article  Google Scholar 

  10. Lafont, V., Armstrong, A.A., Ohtaka, H., Kiso, Y., Mario Amzel, L., Freire, E.: Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization. Chemical Biology & Drug Design 69, 413–422 (2007)

    Article  Google Scholar 

  11. Turko, I.V., Fan, B., Gettins, P.G.W.: Carbohydrate isoforms of antithrombin variant N135Q with different heparin affinities. FEBS Lett. 335, 9–12

    Google Scholar 

  12. Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N., Carrell, R.W.: The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. U. S. A. 94, 14683–14688 (1997)

    Article  Google Scholar 

  13. Thunberg, L., Bäckström, G., Lindahl, U.: Further characterization of the antithrombin-binding sequence in heparin. Carbohydr. Res. 100, 393–410 (1982)

    Article  Google Scholar 

  14. Verli, H., Guimarães, J.A.: Insights into the induced fit mechanism in antithrombin–heparin interaction using molecular dynamics simulations. J. Mol. Graph. Model. 24, 203–212 (2005)

    Article  Google Scholar 

  15. Pol-Fachin, L., Franco Becker, C., Almeida Guimarães, J., Verli, H.: Effects of glycosylation on heparin binding and antithrombin activation by heparin. Proteins: Structure, Function, and Bioinformatics 79, 2735–2745 (2011)

    Article  Google Scholar 

  16. Bitomsky, W., Wade, R.C.: Docking of Glycosaminoglycans to Heparin-Binding Proteins: Validation for aFGF, bFGF, and Antithrombin and Application to IL-8. J. Am. Chem. Soc. 121, 3004–3013 (1999)

    Article  Google Scholar 

  17. Merlitz, H., Wenzel, W.: Comparison of stochastic optimization methods for receptor–ligand docking. Chem. Phys. Lett. 362, 271–277 (2002)

    Article  Google Scholar 

  18. Navarro-Fernández, J., Pérez-Sánchez, H., Martínez-Martínez, I., Meliciani, I., Guerrero, J.A., Vicente, V., Corral, J., Wenzel, W.: In Silico Discovery of a Compound with Nanomolar Affinity to Antithrombin Causing Partial Activation and Increased Heparin Affinity. J. Med. Chem. 55, 6403–6412 (2012)

    Article  Google Scholar 

  19. Ponder, J.W., Case, D.A.: Force fields for protein simulations. Protein Simulations 66, 27–85 (2003)

    Article  Google Scholar 

  20. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  Google Scholar 

  21. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  22. Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000)

    Article  Google Scholar 

  23. Case, D.A., Cheatham III, T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  24. Onufriev, A., Bashford, D., Case, D.A.: Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins-Struct. Funct. Bioinf. 55, 383–394 (2004)

    Article  Google Scholar 

  25. Reynolds, C.H., Tounge, B.A., Bembenek, S.D.: Ligand binding efficiency: Trends, physical basis, and implications. J. Med. Chem. 51, 2432–2438 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, X., Péréz-Sánchez, H., Lightstone, F.C. (2015). Molecular Dynamics Simulations of Ligand Recognition upon Binding Antithrombin: A MM/GBSA Approach. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_56

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics