Abstract
This short section contains several facts and open problems regarding vertex transitive graphs, starting with the following theorem from [BS92] which refines an earlier result of Aldous.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
N. Alon, I. Benjamini, A. Stacey, Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32(3A), 1727–1745 (2004)
I. Benjamini, H. Finucane, R. Tessera, On the scaling limit of finite vertex transitive graphs with large diameter. arXiv preprint arXiv:1203.5624 Combinatorica (2014)
E. Breuillard, B. Green, T. Tao, The structure of approximate groups. Publ. Math. lÍHÉS 116(1), 115–221 (2012)
I. Benjamini, G. Kozma, A resistance bound via an isoperimetric inequality. Combinatorica 25(6), 645–650 (2005)
L. Babai, M. Szegedy, Local expansion of symmetrical graphs. Comb. Probab. Comput. 1(1), 1–11 (1992)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Benjamini, I. (2013). On the Structure of Vertex Transitive Graphs. In: Coarse Geometry and Randomness. Lecture Notes in Mathematics(), vol 2100. Springer, Cham. https://doi.org/10.1007/978-3-319-02576-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-02576-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02575-9
Online ISBN: 978-3-319-02576-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)