[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating for Preference Learning

  • Conference paper
Rules on the Web. From Theory to Applications (RuleML 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8620))

  • 717 Accesses

Abstract

We consider applications of user preference rule learning in marketing. We chose rules because of human-understandability. We chose fuzzy logic because it enables to order items for recommendation. In this paper we introduce a rule based system equivalent to the Fagin-Lotem-Naor preference system. We show a multi-user version, introduce induction and compare it to several methods for learning user preference. The methods are based, first, on interpreting e-shop user’s behavioral patterns collected by scripts as fictitious explicit rating. After this we use this (fictitious) explicit rating for content based preference learning.

Our main motivation is on recommending for small or medium-sized e-commerce portals. Due to high competition, users of these portals are not too loyal and e.g. refuse to register or provide any/enough explicit feedback. Furthermore, products such as tours, cars or furniture have very low average consumption rate preventing us from tracking unregistered user between two consecutive purchases. Recommending on such domains proves to be very challenging, yet interesting research task. As a test bed, we have conducted several off-line experiments with real user data from travel agency website confirming competitiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Claypool, M., Le, P., Wased, M., Brown, D.: Implicit interest indicators. In: IUI 2001, pp. 33–40. ACM, New York (2001)

    Google Scholar 

  2. Eckhardt, A.: Similarity of users’ (content-based) preference models for Collaborative filtering in few ratings scenario. Expert Syst. Appl. 39(14), 11511–11516 (2012)

    Article  Google Scholar 

  3. Eckhardt, A., Horváth, T., Maruščák, D., Novotný, R., Vojtáš, P.: Uncertainty Issues and Algorithms in Automating Process Connecting Web and User. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 207–223. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Eckhardt, A., Horváth, T., Vojtáš, P.: Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 116–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Eckhardt, A., Horváth, T., Vojtás, P.: PHASES: A User Profile Learning Approach for Web Search. Web Intelligence, 780–783 (2007)

    Google Scholar 

  6. Eckhardt, A., Pokorný, J., Vojtás, P.: A System Recommending Top-k Objects for Multiple Users Preferences. In: FUZZ-IEEE, pp. 1–6 (2007)

    Google Scholar 

  7. Eckhardt, A., Vojtáš, P.: Learning user preferences for 2cp-regression for a recommender system. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 346–357. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Computer System Sciences 66, 614–656 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Horváth, T., Sudzina, F., Vojtás, P.: Mining Rules from Monotone Classification Measuring Impact of Information Systems on Business Competitiveness. In: Camarinha-Matos, L.M. (ed.) Emerging Solutions for Future Manufacturing Systems. IFIP, vol. 159, pp. 451–458. Springer, Boston (2004)

    Chapter  Google Scholar 

  10. Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 260–274. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kifer, M., Subrahmanian, V.S.: Theory of Generalized Annotated Logic Programming and its Applications. J. Log. Program. 12(3&4), 335–367 (1992)

    Article  MathSciNet  Google Scholar 

  12. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Netherlands (2000)

    Book  MATH  Google Scholar 

  13. Krajci, S., Lencses, R., Vojtás, P.: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144(1), 173–192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peska, L., Eckhardt, A., Vojtás, P.: UPComp - A PHP Component for Recommendation Based on User Behaviour. In: Web Intelligence/IAT Workshops, pp. 306–309 (2011)

    Google Scholar 

  15. Peska, L., Vojtas, P.: Evaluating Various Implicit Factors in E-commerce. In: RUE (RecSys) 2012 ACM RecSys Workshop on Recommendation Utility Evaluation: Beyond RMSE, CEUR, vol. 910, pp. 51–55 (2012)

    Google Scholar 

  16. Peska, L., Vojtas, P.: Recommending for Disloyal Customers with Low Consumption Rate. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 455–465. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vojtáš, P., Vomlelová, M.: On models of comparison of multiple monotone classifications. In: IPMU 2006 - Information Processing and management under Uncertainty, pp. 1236–1243. Éditions EDK, Paris (2006) ISBN: 2-84254-112-X

    Google Scholar 

  19. Vojtás, P., Vomlelová, M.: Trasformation of deductive and inductive tasks between models of logic programming with imperfect information. In: Bouchon-Meunier, B., et al. (eds.) Proc. IPMU 2004, pp. 839–846. Editrice Universita La Sapienza, Roma (2004)

    Google Scholar 

  20. W3C Uncertainty Reasoning for the World Wide Web Incubator Group, http://www.w3.org/2005/Incubator/urw3/XGR-urw3/

  21. Eckhardt, A.: Prefwork - A framework for testing of methods for user preference learning, https://code.google.com/p/prefwork/

  22. Raś, Z.W., Wieczorkowska, A.A.: Action-rules: how to increase profit of a company. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 587–592. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets. In: ICDM 2008, pp. 263–272. IEEE Computer Society, Washington, DC (2008)

    Google Scholar 

  24. Lee, D.H., Brusilovsky, P.: Reinforcing Recommendation Using Implicit Negative Feedback. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 422–427. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peska, L., Vojtas, P. (2014). Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating for Preference Learning. In: Bikakis, A., Fodor, P., Roman, D. (eds) Rules on the Web. From Theory to Applications. RuleML 2014. Lecture Notes in Computer Science, vol 8620. Springer, Cham. https://doi.org/10.1007/978-3-319-09870-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09870-8_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09869-2

  • Online ISBN: 978-3-319-09870-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics