[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Debates with Small Transparent Quantum Verifiers

  • Conference paper
Developments in Language Theory (DLT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8633))

Included in the following conference series:

  • 481 Accesses

Abstract

We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M., DeMarrais, J., Huang, M.D.A.: Quantum computability. SIAM Journal on Computing 26(5), 1524–1540 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambainis, A., Watrous, J.: Two–way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babai, L.: Trading group theory for randomness. In: STOC 1985, pp. 421–429 (1985)

    Google Scholar 

  4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Condon, A.: Computational Models of Games. MIT Press (1989)

    Google Scholar 

  6. Condon, A., Feigenbaum, J., Lund, C., Shor, P.: Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions (extended abstract). In: STOC 1993, pp. 305–314. ACM (1993)

    Google Scholar 

  7. Condon, A., Ladner, R.E.: Probabilistic game automata. Journal of Computer and System Sciences 36(3), 452–489 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: FOCS 1989, pp. 462–467 (1989)

    Google Scholar 

  9. Demirci, H.G., Say, A.C.C., Yakaryılmaz, A.: The complexity of debate checking. Theory of Computing Systems (2014), doi:10.1007/s00224-014-9547-7

    Google Scholar 

  10. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal of the ACM 39(4), 800–828 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feige, U., Kilian, J.: Making games short (extended abstract). In: STOC 1997, pp. 506–516. ACM (1997)

    Google Scholar 

  12. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gutoski, G., Watrous, J.: Toward a general theory of quantum games. In: STOC 2007, pp. 565–574 (2007)

    Google Scholar 

  14. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society (2002)

    Google Scholar 

  15. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown automata. In: FOCS 1978, pp. 92–106 (1978)

    Google Scholar 

  16. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–243 (1963)

    Article  MATH  Google Scholar 

  17. Yakaryılmaz, A.: Public-qubits versus private-coins. Tech. rep. (2012), ECCC:TR12-130

    Google Scholar 

  18. Yakaryılmaz, A.: Quantum alternation. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 334–346. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(2), 19–40 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 279(6), 873–892 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yakaryılmaz, A., Say, A.C.C., Demirci, H.G. (2014). Debates with Small Transparent Quantum Verifiers. In: Shur, A.M., Volkov, M.V. (eds) Developments in Language Theory. DLT 2014. Lecture Notes in Computer Science, vol 8633. Springer, Cham. https://doi.org/10.1007/978-3-319-09698-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09698-8_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09697-1

  • Online ISBN: 978-3-319-09698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics