[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 290))

Abstract

Twitter is a microblog service that generates a huge amount of textual content daily. All this content needs to be explored by means of text mining, natural language processing, information retrieval, and other techniques. In this context, automatic keyword extraction is a task of great usefulness. A fundamental step in text mining techniques consists of building a model for text representation. This paper proposes a keyword extraction method for tweet collections that represents texts as graphs and applies centrality measures for finding the relevant vertices (keywords). The proposal is applied to two tweet collections of Brazilian TV shows and its results are compared to those of TFIDF and KEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kietzmann, J.H., Hermkens, K., McCarthy, I.P., Silvestre, B.S.: Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons 54, 241–251 (2011)

    Article  Google Scholar 

  2. Yoshida, M., Matsushima, S., Ono, S., Sato, I., Nakagawa, H.: ITC-UT: Tweet Categorization by Query Categorization of On-line Reputation Management. In: Conference on Multilingual and Multimodal Information Access Evaluation (2010)

    Google Scholar 

  3. Prabowo, R., Thelwall, M.: Sentiment analysis: A combined approach. Journal of Informetrics 3, 143–157 (2009)

    Article  Google Scholar 

  4. Bermingham, A., Smeaton, A.: On Using Twitter to Monitor Political Sentiment and Predict Election Results. Sentiment Analysis Where AI Meets Psychology, 2–10 (2011)

    Google Scholar 

  5. Feldman, R., Sanger, J.: The Text Mining Handbook Advanced Approaches in Analysing Unstructured Data, Cambridge (2007)

    Google Scholar 

  6. Hirschman, L., Thompson, H.S.: Overview of evaluation in speech and natural language processing. In: Survey of the State of the Art in Human Language Technology, pp. 409–414. Cambridge University Press and Giardini Editori, Pisa (1997)

    Google Scholar 

  7. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press (1999)

    Google Scholar 

  8. Salton, G., Yang, C.S., Yu, C.T.: A Theory of Term Importance in Automatic Text Analysis. Journal of the American society for Information Science 26, 33–44 (1975)

    Article  Google Scholar 

  9. Zhang, C., Wang, H., Liu, Y., Wu, Y., Liao, Y., Wang, B.: Automatic Keyword Extraction from Documents Using Conditional Random Fields. Journal of Computational Information Systems, 1169–1180 (2008)

    Google Scholar 

  10. Gross, J.L., Yellen, J.: Graph Theory and Its Applications, 2nd edn. Chapman & Hall/CRC (2006)

    Google Scholar 

  11. Jin, W., Srihari, R.K.: Graph-based text representation and knowledge discovery. In: Proceedings of the 2007 ACM Symposium on Applied Computing, vol. 7, pp. 807–811 (2007)

    Google Scholar 

  12. Palshikar, G.K.: Keyword Extraction from a Single Document Using Centrality Measures. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 503–510. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Zhou, F., Zhang, F., Yang, B.: Graph-based text representation model and its realization. Natural Language Processing and Knowledge Engineering (NLP-KE) 8(1), 21–23 (2010)

    Google Scholar 

  14. Schenker, A., Last, M., Bunke, H.: Classification of Web documents using a graph model. Document Analysis and Recognition 1, 240–244 (2003)

    Google Scholar 

  15. Hensman, S.: Construction of conceptual graph representation of texts. In: Proceedings of Student Research Workshop at HLT-NAACL, Boston, pp. 49–54 (2004)

    Google Scholar 

  16. Nieminen, J.: On the centrality in a graph. Scand. J. Psychol. 15, 332–336 (1974)

    Article  Google Scholar 

  17. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. Hage, P., Harary, F.: Eccentricity and centrality in networks. Social Networks 17, 57–63 (1995)

    Article  Google Scholar 

  19. Zhang, K., Xu, H., Tang, J., Li, J.: Keyword Extraction Using Support Vector Machine. In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 85–96. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic Keyword Extraction from Individual Documents. Text Mining: Applications and Theory, 1–20 (2010)

    Google Scholar 

  21. Lott, B.: Survey of Keyword Extraction Techniques. UNM Education (2012)

    Google Scholar 

  22. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA Practical Automatic Keyphrase Action. In: Proceedings of the 4th ACM Conference on Digital Library (DL 1999), Berkeley, CA, USA, pp. 254–226 (1999)

    Google Scholar 

  23. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willyan Daniel Abilhoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abilhoa, W.D., de Castro, L.N. (2014). TKG: A Graph-Based Approach to Extract Keywords from Tweets. In: Omatu, S., Bersini, H., Corchado, J., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds) Distributed Computing and Artificial Intelligence, 11th International Conference. Advances in Intelligent Systems and Computing, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-319-07593-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07593-8_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07592-1

  • Online ISBN: 978-3-319-07593-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics