[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Results on Independent Sets in Categorical Products of Graphs, the Ultimate Categorical Independence Ratio and the Ultimate Categorical Independent Domination Ratio

  • Conference paper
Algorithms and Computation (WALCOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8344))

Included in the following conference series:

  • 1067 Accesses

Abstract

We first present polynomial algorithms to compute maximum independent sets in the categorical products of two cographs or two splitgraphs, respectively. Then we prove that computing the independent set of the categorical product of a planar graph of maximal degree three and K 4 is NP-complete. The ultimate categorical independence ratio of a graph G is defined as lim k → ∞  α(G k)/n k. The ultimate categorical independence ratio can be computed in polynomial time for cographs, permutation graphs, interval graphs, graphs of bounded treewidth and splitgraphs. Also, we present an O  ∗ (3n/3) exact, exponential algorithm for the ultimate categorical independence ratio of general graphs. We further present a PTAS for the ultimate categorical independence ratio of planar graphs. Lastly, we show that the ultimate categorical independent domination ratio for complete multipartite graphs is zero, except when the graph is complete bipartite with color classes of equal size (in which case it is 1/2).

Supported in part by grants 100-2628-E-007-020-MY3 and 101-2218-E-007-001 of the National Science Council (NSC), Taiwan, R.O.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertson, M., Collins, K.: Homomorphisms of 3-chromatic graphs. Discrete Mathematics 54, 127–132 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Lubetzky, E.: Independent sets in tensor graph powers. Journal of Graph Theory 54, 73–87 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aurenhammer, F., Hagauer, J., Imrich, W.: Cartesian graph factorization at logarithmic cost per edge. Computational Complexity 2, 331–349 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, J., Nowakowski, R., Rall, D.: The ultimate categorical independence ratio of a graph. SIAM Journal on Discrete Mathematics 9, 290–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chartrand, G., Kapoor, S.F., Lick, D.R., Schuster, S.: The partial complement of graphs. Periodica Mathematica Hungarica 16, 83–95 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Corneil, D., Perl, Y., Stuwart, L.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926–934 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cunningham, W.: Computing the binding number of a graph. Discrete Applied Mathematics 27, 283–285 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hahn, G., Hell, P., Poljak, S.: On the ultimate independence ratio of a graph. European Journal of Combinatorics 16, 253–261 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph Symmetry – Algebraic Methods and Applications. NATO ASI Series C: Mathematical and Physical Sciences, vol. 497, pp. 107–166. Kluwer (1997)

    Google Scholar 

  10. Hedetniemi, S.: Homomorphisms of graphs and automata. Technical report 03105-44-T, University of Michigan (1966)

    Google Scholar 

  11. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Univ. Press (2004)

    Google Scholar 

  12. Hell, P., Yu, X., Zhou, H.: Independence ratios of graph powers. Discrete Mathematics 27, 213–220 (1994)

    Article  MathSciNet  Google Scholar 

  13. Jha, P., Klavžar, S.: Independence in direct-product graphs. Ars Combinatoria 50, 53–63 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Kloks, T., Lee, C., Liu, J.: Stickiness, edge-thickness, and clique-thickness in graphs. Journal of Information Science and Engineering 20, 207–217 (2004)

    MathSciNet  Google Scholar 

  15. Kloks, T., Wang, Y.: Advances in graph algorithms (Manuscript 2013)

    Google Scholar 

  16. Lubetzky, E.: Graph powers and related extremal problems. PhD Thesis, Tel Aviv University, Israel (2007)

    Google Scholar 

  17. Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ravindra, G., Parthasarathy, K.: Perfect product graphs. Discrete Mathematics 20, 177–186 (1977)

    Article  MathSciNet  Google Scholar 

  19. Tóth, Á.: Answer to a question of Alon and Lubetzky about the ultimate categorical independence ratio. Manuscript on arXiv:1112.6172v1 (2011)

    Google Scholar 

  20. Tóth, Á.: The ultimate categorical independence ratio of complet multipartite graphs. SIAM Journal on Discrete Mathematics 23, 1900–1904 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing 6, 505–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weichsel, P.: The Kronecker product of graphs. Proceedings of the American mathematical Society 13, 47–52 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  23. Woodall, D.: The binding number of a graph and its Anderson number. Journal of Combinatorial Theory, Series B 15, 225–255 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, H.: Independent sets in direct products of vertex-transitive graphs. Journal of Combinatorial Theory, Series B 102, 832–838 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhu, X.: The fractional version of Hedetniemi’s conjecture is true. European Journal of Combinatorics 32, 1168–1175 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hon, WK., Kloks, T., Liu, CH., Liu, HH., Poon, SH., Wang, YL. (2014). Results on Independent Sets in Categorical Products of Graphs, the Ultimate Categorical Independence Ratio and the Ultimate Categorical Independent Domination Ratio. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04657-0_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04656-3

  • Online ISBN: 978-3-319-04657-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics