[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Characterizing the Left Ventricular Ultrasound Dynamics in the Frequency Domain to Estimate the Cardiac Function

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Assessment of cardiac function typically relies on the Left Ventricular Ejection Fraction (LVEF), i.e., the ratio between diastolic and systolic volumes. However, inconsistent LVEF values have been reported in many clinic situations. This study introduces a novel approach to quantify the cardiac function by analyzing the frequency patterns of the segmented Left Ventricle (LV) along the entire cardiac cycle in the four-chamber-image of echocardiography videos. After automatic segmentation of the left ventricle, the area is computed during a complete cycle and the obtained signal is transformed to the frequency space. A soft clustering of the spectrum magnitude was performed with 7.835 cases from the EchoNet-dynamic open database by applying spectral clustering with Euclidean distance and eigengap heuristics to obtain four dense groups. Once groups were set, the medoid of each was used as representant, and for a set of 99 test cases from a local collection with different underlying pathology, the magnitude distance to the medoid was replaced by the norm of the sum of vectors representing both the medoid and a particular case making an angle estimated from the dot product between the temporal signals obtained from the inverse Fourier transform of the spectrum phase of each and a constant magnitude. Results show the four clusters characterize different types of patterns, and while LVEF was usually spread within clusters and mixed up the clinic condition, the new indicator showed a narrow progression consistent with the particular pathology degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.com/acarrera4/cardiac_functoin_analysis/

References

  1. Bozkurt, B., et al.: Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure. Eur. J. Heart Fail. 23(3), 352–380 (2021). https://doi.org/10.1002/ejhf.2115

    Article  Google Scholar 

  2. Carabello, B.A., Spann, J.F.: The uses and limitations of end-systolic indexes of left ventricular function. Circulation 69, 1058–1064 (1984). https://doi.org/10.1161/01.CIR.69.5.1058, https://www.ahajournals.org/doi/10.1161/01.CIR.69.5.1058

  3. Fernández-Caballero, A., Vega-Riesco, J.M.: Determining heart parameters through left ventricular automatic segmentation for heart disease diagnosis. Expert Syst. Appl. 36(2, Part 1), 2234–2249 (2009). https://doi.org/10.1016/j.eswa.2007.12.045, https://www.sciencedirect.com/science/article/pii/S0957417407006409

  4. Huang, Z., Jiang, Y., Zhou, Y.: Heart failure with supra-normal left ventricular ejection fraction: state of the art. Arquivos Brasileiros de Cardiologia 116, 1019–1022 (2021). https://doi.org/10.36660/abc.20190835

  5. Ilardi, F., et al.: Myocardial work by echocardiography: principles and applications in clinical practice. J. Clin. Med. 10, 4521 (2021). https://doi.org/10.3390/jcm10194521. https://www.mdpi.com/2077-0383/10/19/4521

    Article  Google Scholar 

  6. Kosaraju, A., Goyal, A., Grigorova, Y., Makaryus, A.: Left ventricular ejection fraction (2023). https://www.ncbi.nlm.nih.gov/books/NBK459131/

  7. Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R.: EchoGNN: explainable ejection fraction estimation with NBSP graph neural networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 360–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_35

  8. Moya, A., Buytaert, D., Penicka, M., Bartunek, J., Vanderheyden, M.: State-of-the-art: noninvasive assessment of left ventricular function through myocardial work. J. Am. Soc. Echocardiography 36 (2023). https://doi.org/10.1016/j.echo.2023.07.002

  9. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020). https://doi.org/10.1038/s41586-020-2145-8

    Article  Google Scholar 

  10. Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, B.: Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VI. LNCS, vol. 12906, pp. 495–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_48

    Chapter  Google Scholar 

  11. Russell, K., et al.: A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur. Heart J. 33(6), 724–733 (2012). https://doi.org/10.1093/eurheartj/ehs016, https://doi.org/10.1093/eurheartj/ehs016

  12. Toro-Quitian, L., et al.: Automatic estimation of the ejection fraction from diastole and systole ultrasound images by a simplified end-to-end u-net neural network. In: 2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM), pp. 1–5 (2023). https://doi.org/10.1109/SIPAIM56729.2023.10373544

  13. Trainini, J.C., et al.: Fundamentos de la Nueva Mecánica Cardiaca - Bomba de succión. LUMEN (2015). https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004

  14. Wisneski, J.A., Pfeil, C.N., Wyse, D.G., Mitchell, R., Rahimtoola, S.H., Gertz, E.W.: Left ventricular ejection fraction calculated from volumes and areas: underestimation by area method. Circulation 63, 149–151 (1981). https://doi.org/10.1161/01.CIR.63.1.149, https://www.ahajournals.org/doi/10.1161/01.CIR.63.1.149

Download references

Acknowledgments

This work was funded by the project “Estimation of cardiovascular risk integrating Industry 4.0 technologies for the management, processing, and analysis of clinical information” with code 82335 from FCTeI of the call No. 890 of 2020 of MinCiencias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Romero .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors do not have any competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrera-Pinzón, A.F. et al. (2024). Characterizing the Left Ventricular Ultrasound Dynamics in the Frequency Domain to Estimate the Cardiac Function. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics