Abstract
Ensemble pruning techniques are widely used to enhance a set of classifiers’ efficiency and predictive performance by selecting a subset of representative models, preventing redundancy, and ensuring diversity in classification tasks. The Optimum-Path Forest (OPF), a stable and efficient graph-based framework, offers versatile supervised and unsupervised capabilities in various machine-learning applications. The supervised version provides remarkable results with a simple graph-based structure produced by a training process conducted over a single dataset. However, one can notice little effort in OPF-based ensemble learning. This paper introduces an innovative approach to pruning OPF classifiers using meta-descriptions learned by Graph-Matching Networks, which are further employed to cluster similar OPF instances. The strategy selectively chooses representative models that excel in predictive tasks from groups generated by unsupervised OPF. Results demonstrate competitive performance to state-of-the-art pruning algorithms, with experiments conducted over fifteen public datasets, encouraging further exploration of Graph Matching Networks applied to ensemble pruning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Although unsupervised OPF figures one hyperparameter only, i.e., k-max, it can learn the number of clusters on-the-fly.
- 4.
References
Biggs, N., Lloyd, E.K., Wilson, R.J.: Graph Theory, pp. 1736–1936. Oxford University Press, Oxford (1986)
Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)
Fernandes, S.E.N., Passos, L.A., Jodas, D.S., Akio, M., de Souza, A.N., Papa, J.P.: A multi-class probabilistic optimum-path forest. In: Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023), vol. 5: VISAPP, pp. 361–368. INSTICC, SciTePress (2023)
Fernandes, S.E., Pereira, D.R., Ramos, C.C., Souza, A.N., Gastaldello, D.S., Papa, J.P.: A probabilistic optimum-path forest classifier for non-technical losses detection. IEEE Trans. Smart Grid 10(3), 3226–3235 (2018)
Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.: Deep graph matching consensus. arXiv preprint arXiv:2001.09621 (2020)
Guo, H., Liu, H., Li, R., Wu, C., Guo, Y., Xu, M.: Margin & diversity based ordering ensemble pruning. Neurocomputing 275, 237–246 (2018)
Guo, X., Hu, J., Chen, J., Deng, F., Lam, T.L.: Semantic histogram based graph matching for real-time multi-robot global localization in large scale environment. IEEE Rob. Autom. Lett. 6(4), 8349–8356 (2021)
Jiang, Z., Hu, X., Gao, S.: A parallel ford-fulkerson algorithm for maximum flow problem. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), p. 70. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2013)
Jodas, D.S., Passos, L.A., Adeel, A., Papa, J.P.: PL-kNN: a parameterless nearest neighbors classifier. In: 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–4. IEEE (2022)
Jodas, D.S., Passos, L.A., Rodrigues, D., Lucas, T.J., Da Costa, K.A.P., Papa, J.P.: OPFsemble: an ensemble pruning approach via optimum-path forest. In: 2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–5. IEEE (2023)
Lê-Huu, D.K., Paragios, N.: Alternating direction graph matching. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4914–4922. IEEE (2017)
Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: International Conference on Machine Learning, pp. 3835–3845. PMLR (2019)
Lin, Y., Yang, M., Yu, J., Hu, P., Zhang, C., Peng, X.: Graph matching with bi-level noisy correspondence. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 23305–23314. IEEE Computer Society, Los Alamitos (2023)
Lyzinski, V., et al.: Spectral clustering for divide-and-conquer graph matching. Parallel Comput. 47, 70–87 (2015)
Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 245–259 (2008)
Mei-Ko, K.: Graphic programming using odd or even points. Chin. Math. 1, 237–277 (1962)
Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recogn. 45(1), 512–520 (2012)
Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)
Passos, L.A., Papa, J.P., Hussain, A., Adeel, A.: Canonical cortical graph neural networks and its application for speech enhancement in audio-visual hearing aids. Neurocomputing 527, 196–203 (2023)
Passos, L.A., Jodas, D.S., Ribeiro, L.C., Akio, M., De Souza, A.N., Papa, J.P.: Handling imbalanced datasets through optimum-path forest. Knowl.-Based Syst. 242, 108445 (2022)
Pavithra, R., Priyadharshini, S., Hemanandhini, G.: Image matching using weighted graph matching algorithm. In: 7th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 1–5 (2021)
Qu, J., Ling, H., Zhang, C., Lyu, X., Tang, Z.: Adaptive edge attention for graph matching with outliers. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 966–972. International Joint Conferences on Artificial Intelligence Organization (8 2021)
Rocha, L.M., Cappabianco, F.A.M., Falcão, A.X.: Data clustering as an optimum-path forest problem with applications in image analysis. Int. J. Imaging Syst. Technol. 19(2), 50–68 (2009)
Swoboda, P., Rother, C., Alhaija, H., Kainmuller, D., Savchynskyy, B.: A study of lagrangean decompositions and dual ascent solvers for graph matching. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7062–7071. IEEE Computer Society, Los Alamitos (2017)
Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503 (2011)
Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks for deep graph matching. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3056–3065. IEEE Computer Society, Los Alamitos (2019)
Xu, H., Luo, D., Zha, H., Duke, L.C.: Gromov-Wasserstein learning for graph matching and node embedding. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6932–6941. PMLR (2019)
Zyblewski, P., Woźniak, M.: Novel clustering-based pruning algorithms. Pattern Anal. Appl. 23(3), 1049–1058 (2020)
Acknowledgements
The authors are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) grants 308529/2021-9 and 400756/2024-2, to the São Paulo Research Foundation (FAPESP) grants 2013/07375-0, 2018/25225-9, 2019/07665- 4, 2023/14427-8, 2023/10823-6, 2023/03726-4, 2023/01374-3, and 2023/14354-0, to Unesp-IEPe-RC-#06/2023 PROPe grant, and the Petrobrás Brazil grant #2017/00285-6 for their financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jodas, D., Passos, L.A., Rodrigues, D., Costa, K., Paulo Papa, J. (2025). Graph Matching Networks Meet Optimum-Path Forest: How to Prune Ensembles Efficiently. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15307. Springer, Cham. https://doi.org/10.1007/978-3-031-78183-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-78183-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78182-7
Online ISBN: 978-3-031-78183-4
eBook Packages: Computer ScienceComputer Science (R0)